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ABSTRACT: 

Detecting forged audio has become increasingly difficult with advanced editing and synthesis tools. Most 

existing methods rely on spectral or deep learning features but often overlook phase information and fractal 

patterns of genuine audio. In this paper, we propose a hybrid approach that integrates phase-based fractal 

analysis with a cross-domain transformer for improved forgery detection. Audio is converted into time–

frequency representations, where fractal features are extracted from phase and entropy features from 

magnitude. A dual-stream network, combining CNNs and a transformer with cross-attention, learns these 

representations, while anomaly scoring using Gaussian Mixture Models and Mahalanobis distance identifies 

manipulated segments. Experiments on datasets covering GAN-generated speech, splicing, and adversarial 

attacks show that our method outperforms existing techniques, even under compression and post-processing. 

The approach is efficient, interpretable, and practical for forensic applications. 
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INTRODUCTION: 

The rapid growth of artificial intelligence and digital signal processing has made audio forgeries increasingly 

realistic and difficult to detect [1]  . Modern tools such as GANs, diffusion models, and voice cloning can 

generate speech that closely mimics real voices. These capabilities raise serious concerns for privacy and 

security, enabling threats like identity theft, misinformation, fake evidence, financial fraud, and harassment. 

Several recent incidents have highlighted the growing impact of such forgeries. 

 Deepfake voice scams (2024): Attackers cloned executives’ voices to approve fake fund transfers, causing 

multi-million dollar losses [2]. 

 Political misinformation (2025): Synthetic voices were used to spread fake speeches during elections, 

damaging public trust [3]. 

 Social engineering attacks: High-quality fake audio tricked employees into leaking confidential 

information [4]. 

Traditional audio forgery detection mostly relies on spectral features or deep learning models trained on 

spectrograms. While these methods can work in controlled cases, they often fail against advanced forgeries that 

imitate frequency patterns or use strong post-processing [5]. Importantly, they usually miss two key aspects of 

real audio that are hard to fake: 

 Phase Dynamics: The phase, shaped by natural sound production, carries subtle temporal patterns missing 

in synthetic audio. 

 Fractal Complexity: Genuine audio has fractal-like self-similarity and variations across scales, while 

generated signals tend to show unnatural regularity or randomness [6]. 

To overcome these challenges, we propose a hybrid approach that: 

 Uses phase fractal analysis: extracting measures like Hurst exponent, box-counting dimension, lacunarity, 

and multi-fractal spectra to capture natural complexity. 

 Adopts a cross-domain transformer: a dual-stream network that processes both phase fractal features and 

magnitude features, merging them through cross-attention. 

 Supports robust anomaly detection: applying Gaussian Mixture Models and Mahalanobis distance scoring 

on fused features to spot forged segments, even under adversarial or post-processed conditions. 

 Improves interpretability and efficiency: offering explainable decisions and fast performance suitable for 

real-time forensic use. 

By integrating these innovations, our proposed system not only advances detec- tion accuracy but also enhances 

explainability, helping experts understand and trust the forensic results. As generative technologies evolve, such 

hybrid and interpretable solutions are essential for safeguarding digital trust in critical domains. 
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II. LITERATURE REVIEW 

Audio forgery detection has evolved rapidly in response to the sophistication of generative models and editing 

tools. Early detection techniques relied on spectral analysis and handcrafted features, while recent advances 

leverage deep learning and multi-modal analysis. The following table Table I summarizes seminal and recent 

works relevant to audio forgery detection, highlighting the main approaches, targeted forgeries, key 

contributions, and limitations. 

1) Key Insights: 

a) Many recent methods employ deep learning on magnitude spectrograms, achieving impressive results in 

adversarial and copy-move forgery detection [1], [10] . 

b) Copy-move forgeries dominated early research, while the focus has now shifted toward GAN-based and AI-

synthesized speech attacks [7], [11]. 

c) Most state-of-the-art methods overlook phase information and fractal signal complexity, which are intrinsic 

to natural audio [6]. 

d) Few approaches offer explainable mechanisms or robustness against intentional post-processing [8], [9]. 

2) Advancements over Prior Work: The proposed hybrid phase-fractal and cross-domain transformer 

framework: 

a) Exploits previously untapped phase dynamics and fractal metrics. 

b) Provides interpretable decisions through cross-domain attention. 

c) Outperforms baselines under adversarial and compression stressors 

TABLE I. SUMMARY OF KEY LITERATURE IN AUDIO FORGERY DETECTION 

Ref. Approach/Features Contributions Limitations 

Su et al. (2023) 

[7] 

Sliding window, spectral 

features 

Copy-move detection in short 

forged slices, robust post-

processing 

Focused on copy-

move, not deepfakes 

Li et al. (2024) 

[8] 

"Mixed Paste" command 

analysis, STFT 

Novel attack-specific 

feature extraction, detection of 

mixed-pasted forgeries 

Method tailored to 

specific forgery 

Cai et al. (2023) 

[9] 

Audio-visual benchmark, 

multi-modal fusion 

Large-scale dataset, 

content-driven detection, 

audio-visual forensics 

Limited to AV 

pairs, lacks fractal 

analysis 

Liu et al. (2023) 

[10] 

Super-resolved 

spectrogram images, CNN 

Forgery localization with 

high-res spectrograms 

Only magnitude 

features, not phase 

Chen et al. 

(2024) [11] 

CNN-based spectral 

analysis 

Copy-move localization 

using spectral irregularities 

Limited 

interpretability, 

focuses on magnitude 

Zhang et al. 

(2024) [1] 

Deep learning for 

deepfake detection, neural 

embeddings 

State-of-the-art accuracy 

against GAN attacks 

Lacks explicit 

phase/fractal metrics 

Wu et al. (2015) 

[12] 

Spoofing 

countermeasures, survey of 

approaches 

Comprehensive 

categorization of attacks and 

defenses 

Pre-deepfake era, 

lacks modern 

synthesis focus 

Todisco et al. 

(2017) [13] 

Constant-Q cepstral 

coefficients 

Improved speaker 

verification spoofing 

countermeasures 

Cepstral analysis, 

not designed for copy-

move 

Mandic et al. 

(2002) [6] 

Phase synchronization 

and fractal signal analysis 

Identification of self-

similar and nonlinear speech 

properties 

Not applied to 

forgery/localization 
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Pan et al. 

(2010)  [14] 

Transfer learning 

techniques 

Survey for adapting 

models to novel audio 

domains 

General adaptation, 

not forgery detection 

III. PROPOSED METHODOLOGY 

This section elaborates on the proposed hybrid approach, which integrates phase-based fractal analysis with a 

cross-domain transformer for robust audio forgery detection. The methodology consists of four primary 

components as described below. 

A. Phase-Fractal Feature Extraction 

1) Time-Frequency Decomposition: Raw audio signals are 

first transformed into the time-frequency domain using the Short-Time Fourier Transform (STFT), yielding 

both magnitude and phase components: 

 

where "x" ["n" ] is the audio signal, "w" ["n" ] is the window function, and "X" ("t,f" ) comprises the 

spectrogram (magnitude) and phase [5]. 

2. Fractal Dimension of Phase Dynamics: For each frame, phase signals undergo fractal analysis to capture 

natural selfsimilarity. The box-counting fractal dimension D is computed as: 

 

where "N" ("ϵ" ) is the number of boxes of size "ϵ"  covering the signal. The Hurst Exponent "H"  is also 

estimated to measure long-range dependencies: 

 

where "R/S"  is the rescaled range over window size "n"  [6] . 

3) Lacunarity and Multi-Fractal Spectra: Lacunarity Λ quantifies the gappiness of the phase signal and 

distinguishes between synthetic and natural audio: 

 

where "S" ("r" ) is the sum of signal intensities within a window of radius "r" . 

The multi-fractal spectrum "f" ("α" ) is computed using wavelet leaders, capturing scaling across multiple 

timescales: 

 

4. Magnitude Complexity (Multi-Scale Entropy): From the magnitude spectrogram, multi-scale entropy "E"  

measures temporal predictability: 

 

where "m"  is the embedding dimension, "r"  is the tolerance, "N"  is the number of vectors, and "p" _"i"  is the 

probability of each state [15] .  
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B. Cross-Domain Transformer Architecture 

1) Dual-Stream Input Processing: 

 Stream 1: Processes 2D fractal-phase features via Conv1D layers. 

 Stream 2: Processes log-mel spectrogram and derivatives via depthwise separable convolutions. 

2) Cross-Attention Fusion Module: 

A transformer encoder carries out both intra- and cross-stream attention: 

 

where "Q"  (Query) are phase-fractal features, "K"  (Key) are magnitude features, "V"  (Value) are learned 

weights, and "d" _"k"  is the dimension of the key vectors [16]. 

C. Anomaly Scoring and Forgery Decision 

The fused features are analyzed using a Gaussian Mixture Model (GMM) for anomaly detection. The 

Mahalanobis distance from genuine clusters is used for thresholding: 

 

where "x"  is the sample, "μ"  is the mean vector, and "Σ"  is the covariance matrix of genuine data [5]. 

D. Algorithm Summary 

 Decompose audio into time-frequency, extract phase and magnitude features. 

 Compute fractal dimensions, lacunarity, and multi-scale entropy. 

 Feed features into dual-stream network; fuse via transformer-based cross-attention. 

 Apply anomaly scoring to detect and localize forgeries. 

IV. RESULTS AND DISCUSSION 

To evaluate the effectiveness of the proposed hybrid phase-fractal and cross-domain transformer approach, 

extensive experiments were conducted on a diverse benchmark dataset containing GAN-generated, spliced, and 

copy-move audio forgeries. Performance was compared with state-of-the-art methods reviewed in Section 2, 

including both traditional spectral analysis and recent deep learning-based techniques. 

A. Evaluation Metrics 

The main metrics considered for evaluation include. 

1. Accuracy (%): Percentage of correctly classified audio segments. 

2. AUC (%): Area Under the Receiver Operating Characteristic Curve, indicating discrimination performance. 

3. Robustness (%): Performance retention under compression or post-processing. 

4. Interpretability: Qualitative assessment of model explainability (Yes/No). 

B. Performance Comparison 

Table II summarizes the comparative results. The proposed methodology consistently outperforms or matches 

the best baseline methods, especially in challenging scenarios with compressed data and localization tasks. 

Importantly, it uniquely provides enhanced interpretability through cross-domain attention. 
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TABLE II. TABLE TYPE STYLES 

 

C. DISCUSSION 

The experimental results demonstrate that: 

 Positioning Figures and Tables: The proposed method achieves 95.2% accuracy and 96.7% AUC, surpassing 

or matching the best prior method (Deepfake Detection DL [1]) by approximately 0.8–0.7 percentage points 

in accuracy and AUC respectively. 

 Robustness to compression and post-processing is improved (91% retention) due to the combination of 

phase-based fractal features and cross-attention fusion, exceeding all other benchmarks. 

 Unlike prior methods, our approach provides model interpretability via attention visualization, aiding 

forensic analysis. 

Overall, the hybrid methodology demonstrates not only superior numerical performance but also enhanced 

explainability, making it highly suitable for trustworthy real-world audio forensic applications. 

V. CONCLUSION 

This methodology pioneers the integration of fractal geometry and cross-domain attention for audio forensics, 

achieving state-of-the-art performance while maintaining interpretability. Future work will extend the approach 

to video deepfakes by correlating audio-visual fractal patterns. 

A. Ethical Considerations 

Developed detection models will be open-sourced to prevent misuse by forgery creators. 

B. Key Contributions 

This approach addresses critical limitations in existing literature by: 

1. Leveraging previously untapped phase fractal properties 

2. Introducing explainable cross-domain attention mechanisms 

3. Achieving robustness against post-processing artifacts. 

No prior work combines fractal analysis of phase data with transformer-based cross-modal fusion, making this a 

novel contribution to the field.  

Method Accuracy (%) AUC (%) Robustness (%) Interpretability 

Spectral Sliding Window 91.8 93.0 84 No 

Mixed Paste Detection 92.7 94.1 85 No 

Audio-Visual Fusion 93.2 95.0 87 Partial 

Super-Resolution 

Spectrogram CNN 

92.5 94.0 85 No 

CNN-Based Spectral 

Analysis 

91.1 91.7 80 No 

Deepfake Detection DL 94.4 96.0 89 No 

Proposed (Hybrid Phase-

Fractal + Cross-Domain 

Transformer) 

95.2 96.7 91 Yes 
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