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ABSTRACT 
This study presents a comprehensive analysis of a single-server queueing system incorporating delayed server 
vacations, a scenario commonly encountered in real-world service systems such as manufacturing lines, 

computer networks, and customer service centers. In the proposed model, the server does not immediately take 

a vacation upon becoming idle but instead waits for a predetermined delay period. If no new arrival occurs 
within this delay, the server initiates a vacation, during which it becomes unavailable for service. We develop a 

stochastic model to analyze the system’s behavior under steady-state conditions. Key performance metrics, such 

as average queue length, server utilization, expected waiting time, and probability of server vacation, are 
derived using probability generating functions and supplementary variable techniques. The impact of the delay 

period and vacation parameters on system performance is also examined through numerical examples and 

sensitivity analysis. The findings provide insights into optimizing server utilization and improving service 

efficiency in systems where delayed vacations are practical or necessary. This work contributes to the broader 
understanding of queueing models with vacation policies and offers valuable implications for designing efficient 

service mechanisms. 

Keywords: Queueing theory, Single-server system, Delayed vacation, Server vacation policy. 

INTRODUCTION 
The fundamental framework of this study is a queueing system featuring a single server that follows a delayed 

vacation policy. Implementing such a vacation strategy can enhance overall system efficiency by ensuring 

timely service delivery to customers with minimal delays. In this model, customer arrivals are assumed to 
follow a Poisson process with rate parameter λ, while service is provided in batches, with the service times 

following an exponential distribution characterized by parameter µ. 

Model Description 
This study examines an M/M (a d, b)/(2, 1) queueing system characterized by a single server with delayed 

vacation behavior. In this model, late arrivals are allowed to join an ongoing service batch, provided the total 

number of units in that batch does not exceed the predefined maximum capacity, denoted by ‗d‘. The server is 
permitted to take only one vacation at a time, and the duration of each vacation follows an exponential 

distribution with rate parameter θ. All other assumptions remain consistent with the standard model, except as 

modified by the conditions outlined in the following statement. 

At each service completion or vacation return point, if a server finds n units in the queue, where a ≤ n ≤ d − 1, it 
initiates service for the entire batch. During the ongoing service, any new arrivals are allowed to join the batch 

until either the service is completed or the batch reaches the maximum allowable size d, whichever occurs first. 

Mathematical Formulation 
The queueing system can be formulated as a continuous time parameter Markov   chain   with   states   are   

Pjn(n≥0,   j   =   0,1,2,3)   and Qjn ((0 ≤ n ≤ a-2), j = 1,2,3) which denotes the steady state probabilities, where 

‗n‘ represents the number of customers in the queue and ‗j‘ signifies the states of the server. 

The states of the process are as follows 

P0n – the probability that one server is idle and the other on vacation, 

P1n – the probability that one server is busy and the other on vacation, 

P2n – the probability that both the servers are busy, 

P3a-1 – the probability that one server is busy and the other server is on switchover period 

Q1n – the probability that one server is busy and the other server is idle, 

Q2n – the probability that one server is vacation and other server in on switch over period 

Q3n – the probability that both the servers are busy with accessible batches 

The limiting probabilities corresponding to different states are 
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    𝑡            𝑡      𝑡            𝑡  exists. 

Steady State Equations 

The steady state equations satisfied by Pjn (j=0,1,2,3) and Qjn (j=1,2,3) are given by 

(𝜆 + 𝜇)𝑃00 = 𝜇𝑃10 + 𝜇 10  ………………………………………………………….(1) 

(𝜆 + 𝜃)𝑃0𝑛 = 𝜆𝑃0𝑛−1 + 𝜇𝑃1𝑛 + 𝜇 1(1 ≤ 𝑛 ≤ 𝑎 − 2)…………………………………………………..(2) 

(𝜆 + 𝜃)𝑃0𝑎−1 = 𝜆𝑃0𝑎−2 + 𝜇𝑃1𝑎−1 +  3𝑎−1 + 𝜇 1𝑎−1  ……………………………………………………(3) 

(𝜆 + 𝜇 + 𝜃)𝑃10 = 𝜆𝑃0𝑎−1 + 2 𝜇𝑃20 + 𝜆 3𝑎 + 𝜇 ∑ 𝑃  
 
   ……… ……………….……..(4) 

(𝜆 + 𝜇 + 𝜃)𝑃1𝑛 = 𝜆𝑃1𝑛−1 + 2 𝜇𝑃2(1 ≤ 𝑛 ≤ 𝑎 − 2)……………………………..………(5) 

(𝜆 + 𝜇 + 2𝜃)𝑃1𝑎−1 = 𝜆𝑃1𝑎−2 + 𝛼𝑃3𝑎−1 ………………………………………..……….(6) 

(𝜆 + 𝜇 + 𝜃)𝑃1𝑛 = 𝜆𝑃1𝑛−1 + 𝜇𝑃1𝑛+(𝑛 ≥ 𝑎) ……………………………………………..(7) 

(𝜆 + 2 𝜇)𝑃20 = 𝜆𝑃3𝑎−1 + 𝜃 ∑ 𝑃  
 
   +  𝜇 ∑ 𝑃  

 
   + 𝜆Q0𝑛−1 ………………….………(8) 

(𝜆 + 2 𝜇)𝑃2𝑛 = 𝜆𝑃2𝑛−1 +𝜃 𝑃1𝑛+𝑏 + 2𝜇𝑃2𝑛+(𝑛 ≥ 1)…………………………..…………(9) 

(𝜆 + 𝜇 + 𝛼)𝑃3𝑎−1 = 2𝜇𝑃2𝑎−1(𝑛 = 𝑎 − 1)……………………..…………….…………(10) 

𝜆  2𝑎−1 = 𝜃𝑃0𝑎−1 + 𝜆 3𝑎−1+  𝜇 ∑    
   
   + 𝜆 2𝑎−2 ………………………..……..(11) 

(𝜆 + 2 𝜇) 3𝑛 = 𝜆 3𝑛−1 +𝜃 𝑃1𝑛 + 2𝜇𝑃2(𝑎 ≤ 𝑛 ≤ 𝑑 − 1)……………………….……(12) 

𝜆  20 = 𝜃𝑃00 …………………….…………………………………………….……..(13) 

𝜆  2𝑛 = 𝜃𝑃0𝑛 + 𝜆 2𝑛−1(1 ≤ 𝑛 ≤ 𝑎 − 2)……………………….……………..……..(14) 

(𝜆 + 𝜇) 1𝑛 = 𝜆  1𝑛−1 + 𝜃𝑃1(1 ≤ 𝑛 ≤ 𝑎 − 1)………………………………………(15) 

(𝜆 + 𝜇) 10 = 𝜃𝑃10 + 𝜆  2𝑎−1 ………………………………….……………………(16) 

Computation of steady state solutions 

Let E denote the forward shifting operator defined by  𝐸 𝑃    𝑃     . From equation (7) we have, (𝜇 E
b+1

 −(𝜆 

+ 𝜇 + 𝜃)E + 𝜆) 𝑃1𝑛 = 0 (𝑛 ≥ 𝑎) . The characteristic equation of the above equation has only one real root inside 

the circle |Z| =1 by Rouche‘s theorem when 𝜌 =   λ +𝜃 is less than 1 then 

𝑃1𝑛 = 𝑟𝑛−𝑎+1𝑃1𝑎−1(𝑛  ≥ 𝑎 − 1) ……………………………………………………  (17) 

from equation (9), (2𝜇E
b+1 

-(𝜆 + 2𝜇)E + 𝜆) 𝑃2𝑛 = - 𝜃 𝑃1𝑛+𝑏+1 the characteristic equation of this equation has 

only one real root by Rouche‘s theorem which lies in the interval (0,1) when and using equation (15), after 
simplification, 

𝑃      𝑟 
   𝑟 

  𝑃     𝑛     …………………………………………………..(18) 

Where    is a constant and B= 
    

     

          
 

From equation (5), substituting n = a-2, a-3, ...,1 and solving recursively using (17) and (18), 

𝑃1𝑛 = ( 1(𝑟1) + B𝐶𝑛(𝑟0)) 𝑃1𝑎−1(1 ≤ 𝑛 ≤ 𝑎 − 2)………………………………………(19) 

where Cn  𝑥  
   

      
 𝑥  (

 

 
)
   

  ), R=
 

     
 and B= 

    
     

          
 

Similarly solving equation (17) recursively using (19) 

 1𝑛 = ( 2𝑟𝑛 +  1𝐷𝑛(𝑟1) + B𝐷𝑛(𝑟0) ) 𝑃1𝑎−1, (1 ≤ 𝑛 ≤ 𝑎 − 1)………………………..(20) 

here A2 is a constant, r2 =
 

   
 

Dn  𝑥  
   

      
 

    

        
 (

 

 
)
   

  

 
), R=

 

     
 and B= 

    
     

          
 

By adding (2) , (14) and using the equations (1) and (13) 
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𝑃       
 

 
∑  𝑃          

   , (0 ≤ 𝑛 ≤ 𝑎 − 2) 

From equations (19) and (20) substituting the values of 𝑃1𝑛 𝑎𝑛𝑑  1𝑛 

𝑃       
 

 
∑    𝑟 

     𝐶  𝑟   𝐷  𝑟      𝐶  𝑟   𝐷  𝑟     𝑃    
 
    ............(21) 

After simplification 

Cn  𝑥  𝐷  𝑥  𝐹  𝑥  
      

          

 

 

Further simplifying the above equation, 

𝑃       
 

 
    

    
   

    
]+  𝐹  𝑟   

    
   

    
]+ 𝐹  (𝑟 ) 

    
   

    
] 𝑃     

Where 𝐹  𝑥  
      

          
 

The probability of one of the server is busy and the other server is on switchover period can be solved by using 

(10) 

𝑃3 𝑎−1 [ 1(𝑟1) + B𝐷𝑛(𝑟0) )] 𝑃1𝑎−1   here 𝐺 𝑥  
      

       
 …………………………(22) 

Using the above results 

𝑃         𝑟 
    𝐹  𝑟  𝑟 

  𝐹  𝑟  𝑟 
  𝑃       𝑛  𝑎     ………..(23) 

To find the probability that the servers busy and other server is busy with accessible batch limits, from equation 
(12) 

 3𝑛=( 3𝑟𝑛+ 𝐻𝑛(𝑟1)+ 𝐻𝑛(𝑟0) + 𝑘 𝑟𝑛−𝑎+2
)𝑃1𝑎−1(𝑎 − 1 ≤ 𝑛 ≤ 𝑑)………………(24) 

Where Hn  𝑥  
    

       
 𝑥    (

 

  
)
 

  
   ), r3=

 

    
 and k= 

 

          
 

To find the value of constants, using the results of 𝑃3 𝑎−1, 𝑃2𝑛 ,1𝑛 , and  1𝑛 in equation (8) 

(𝜆 + 2 𝜇)( 1 +  ) = [ 1(𝐺(𝑟1) + 𝐷𝑛(𝑟1)) +  (𝐺(𝑟0) + 𝐷𝑛(𝑟0))]  𝜃𝑟 
    (

  
    

   

    
) + 2 [  (

  
    

   

    
) + 

k(
  
    

   

    
)] +  [   𝑟 

   

By simplifying, the value of constant  2 is obtained as follows 

  =  
 

  
   [    𝑟      𝑟   

   

 
(

    
     

    
)  ……………………………………(25) 

Where K(x)= 
    

      
 – 

  

 
 (

       

   
)  

      

      
 

Also to obtain the value of  1, by adding (4) and (16), 

  =  
 

     
[  

   
 

 
(
    

     

    
)  - 𝐷  𝑟     (

     
 

    
)-   +(

     
     

    
)]………………….(26) 

Where 𝑧 𝑟  =[F 𝑟  {   (
  
    

    
)} - 2  – 

     

  
     ] 

By using the equation (3), the value of   is obtained as 

A= 
(     

       )(
  
    

   

    
)        

           
  
    

   

    
  

   ………………………………………… ……(27) 

To get the value of  3, using (11) 

 3 =   (𝑟1) + B (𝑟0) + 𝑟2 1(𝑟0) …………………………………………………...(28) 

Where        (1- 
 

    
 + 

       

     
)  and Q1 (𝑟0) = 1-  

  
   

   
( 𝑟  𝜇) 
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Thus, all steady-state probabilities have been expressed in terms of P₁ₐ₋₁, which can be calculated using the 

normalization condition. As a result, all probabilities are fully determined by the parameters of the queueing 
system. 

To obtain the value of 𝑃1𝑎−1, by using the normalizing condition 

∑  𝑃       𝑃       ∑ 𝑃   ∑ 𝑃   ∑      𝑎    𝑃         
   

 
   

 
   

   
   .(29) 

Substitute the results from the equations (17), (18), (21), (22) and (24) 

𝑃     
  =   [N (𝑟 )+(

  
    

   

    
)     N+ 𝑟   + 

    
 

    
]+   𝐹  (𝑟 )[N (𝑟 )+ 

    
 

    
] + 

B(
    

    
) +   𝐹   𝑟     𝑁  𝑟  

    
 

    
    

 

    
 𝐺 𝑟   𝑘𝑟 

   
    

     

    
 ] …………(30) 

Where G(x)=
 

 
[

 

   
 – 

       

      
] 

Performance Measures 
Performance indicators are essential for analyzing and predicting the behavior of the system. The effectiveness 

of the queueing system can be demonstrated by evaluating its key performance metrics. Since the steady-state 

probabilities are determined, various characteristics of the queue—such as average queue length, waiting time, 
and server utilization—can be readily computed. 

Mean Queue Length 

Let 𝐿𝑞 be the expected number of customers in the queue then 

𝐿  = ∑ 𝑛 𝑃          
    + ∑ 𝑛 𝑃          

    + ∑ 𝑛𝑃  
 
    +∑ 𝑛𝑃  

 
    + ∑ 𝑛     𝑎     

   

  𝑃      ….(31) 

Using the above results, the expected number of customers in queue is 

𝐿𝑞 = [  3{ 
  

       
 - 

  
    

   

    
} +  2W1(𝑟2) +  1𝐹𝑛(𝑟1)W1(𝑟1)+B𝐹𝑛(𝑟0)W1(𝑟0) + 

  

    
{a+ 

  

    
} +

    

       
 + 

    

       
 + k   

      +  1(𝑟1)+B𝐺(𝑟0) + A{ 
  

       
 - 

  
    

   

    
} 

+ {
  

       
 + 

 

 
 (d(d-1)-a(a-1))}] ……………………………………………………….(32) 

Where W1 (x)= 
       

       
 + [

       

      ] (1- 
  

      
) 

Probability that both servers are busy (P2B) 

The system has more than ‗b‘ customers, then both the servers will busy. Let 𝑃2  be the probability that both 
the servers are busy, then 

𝑃    (  
 

    
 + B

 

    
) 𝑃     …………………………………………………….(33) 

Probability that one server is busy and the other server is on vacation (P1B) 

If the number of customers in the system is fewer than a − 1, and one server is occupied with a batch within the 
accessible limit, the other server will remain on vacation until a minimum batch size of customers is available. 

Let P1B denote the probability that one server is actively serving while the other is on vacation. 

𝑃    (   
    

 

    
    𝐶  𝑟  

    
 

    
  𝐶  𝑟  

    
 

    
) 𝑃     ……………………………..(34) 

Probability that one server is idle the other is on vacation (P0B) 
When the number of customers in the system is fewer than a, one of the servers remains idle while the other 

departs for a vacation. Let P₀ᴮ represent the probability that one server is idle and the other is on vacation. Then, 

𝑃   
 

 
    

 

    
  

       
  

       
]+  𝐶  𝑟    

       
  

       
 +  𝐶  (𝑟 )  

       
  

       
 ] 𝑃    ……………(35) 

Probability that one server is busy and the other server is on switchover period (P3a-1) 

If one of the servers observes that there are a − 1 customers in the system while the other server is busy, it 

remains idle until the number of customers reaches a. This idle waiting time is referred to as the server's 
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switchover period. Let P₃ₐ₋₁ denote the probability that one server is active and the other is in the switchover 

phase. 

𝑃3𝑎−1 = [ 1(𝑟1) + B(𝑟0) ] 𝑃1𝑎−1 ……………………………….………………………….(36) 

Probability that the server busy with accessible batch (Q3B) 
When one server is occupied with a batch of n customers, where a < n < d − 1, the other server begins serving 

the remaining customers under the following conditions: if the queue has d to b customers, the server takes all 

of them for service; if the queue has more than b customers, it serves exactly b customers. This type of service 
arrangement is referred to as a Non-Accessible Batch Service. In this scenario, both servers are actively 

engaged—one with an accessible batch, and the other with a non-accessible batch. 

        
     

    
    

       
]+ 𝐻  𝑟   

     
    

    

       
 +  𝐻  (𝑟 ) 

  (  
    

   )

       
 +k𝑟 

        𝑃     …(37) 

Numerical Analysis 

The numerical results for the performance measures, based on selected values of the parameters a, b, 𝜃, 𝜇, and 

𝜆, are presented in Tables 1, 2, and 3. From Table 1, it is observed that the normalization condition P0B + P1B + 

P2B + P3a-1 + Q3B ≈ 1 holds true across various combinations of a, b, and λ, confirming the consistency and 
validity of the probability distributions used in the model.. 

Table 1: The steady state results along with 𝐿q for various values of a, d, b, 𝜃= 0.2 and µ= 1 

𝜆  

a = 10 
d = 13 

b = 25 

𝐿𝑞 𝑃0  𝑃1  𝑃2  𝑃3𝑎−1  3  

5 4.9166 0.5117 0.4375 0.0001 0.000041 0.00001 

10 7. 2293 0.3323 0.6693 0.0015 0.004710 0.002110 

15 11.1211 0.2540 0.6800 0.0118 0.012060 0.011120 

6 a = 20 
d = 25 

b = 30 

8.9145 0.7674 0.1601 0.0008 0.000080 0.000071 

12 10.7853 0.4340 0.5245 0.0097 0.003421 0.002900 

18 15.2785 0.2100 0.6345 0.0678 0.004560 0.003950 

10 a = 30 

d = 35 

b = 50 

13.1418 0.7024 0.2921 0.0006 0.000041 0.000032 

20 18.6009 0.5106 0.4206 0.0021 0.001178 0.00232 

30 27.7541 0.3123 0.6076 0.0124 0.013140 0.01450 

Table 2: 𝐿q for various values of   , a, d when b = 50, 𝜃 = 0.5 and 𝜇= 1 

𝜆 a=10 d = 15 a=20 d = 25 a=30 d = 35 a=40 d = 45 

5 5.2399 9.0993 15.2845 19.2809 

10 7.5620 11.6587 15.6054 19.9154 

15 12.0918 12.7643 15.9769 20.1236 

20 16.4365 15.8790 17.9896 21.4732 

25 18.9994 19.4367 20.9076 22.8553 

Cost Model 
The cost analysis is done for the models analyzed in this chapter by considering different costs associated with 

the servers and customers waiting time. Let 

𝐶0 = fixed cost per unit time for each server 

W0 = waiting cost per unit service by each server 

𝐶1 = cost per unit service by each server 

If M denotes the expected total cost per unit time for operating the system, then M = 2𝐶0+W0𝐿𝑞+𝐶1 𝜇 (2𝑃2  

+ 𝑃1 +(a-1)𝑃3𝑎−1+(d-1)  3 ). The expected total cost per unit time for the operating system M is compared with 

single vacation of M/M (a,b)/(2,1) for various values of a, b when 𝜃= 0.1 and 𝜇= 1 

Table 3: Comparison of 𝐿q and M for M/M (a,b) /(2,1) and M/M (a, d, b)/(2,1) model 

 

 

 M/M(a,b)/(2,1) Single 

vacation 

 M/M(a,d,b)/(2,1) single and 

delayed vacation 

𝐿𝑞 M 𝐿𝑞 M 

5  

a=10 

b=25 

5.262475 75.069336  

a=10 

d=15 

3.0001 71.8076 

10 10.98572 92.09053 4.0111 77.2768 

15 20.927956 118.796974 5.0043 101.6114 
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20 34.238483 161.142303 b=25 5.1201 118.12263 

8  

a=25 
b=40 

12.347372 93.351715  

a=25 
d=32 

b=40 

10.7087 89.7553 

16 16.032642 109.756927 11.0517 100.0012 

24 26.168909 144.198929 11.9604 118.4390 

32 46.064209 207.200989 12.0541 129.23140 

10  

a=40 
b=50 

19.675701 114.010056  
a=40 
d=43 

b=50 

16.4839 100.3221 

20 22.677698 127.722862 17.0023 115.7685 

30 32.856942 162.452194 18.1805 125.44432 

40 55.439793 233.982773 20.0135 145.64786 

From the table 3 we infer that Lq in M/M(a,b)/(2,1) is more compared to M/M(a, d, b)/(2,1) queueing 

model. 

Pictorial Representation 

The graph illustrates a comparison of the expected queue length (𝐿𝑞) between the proposed model and other 

existing vacation queueing models. It is evident that the average number of customers in the proposed M/M (a, 

d, b)/(2, 1) system is significantly lower than that in the traditional M/M(a,b)/(2,1) model. 

 
Figure 1: Comparison of M/M(a,b)/(2,1) and M/M(a,d,b)/(2,1)           queueing models 

CONCLUSION 

In this study, an M/M(a,d,b)/(2,1) vacation queueing model is analyzed, where each server takes a single 
vacation based on batch sizes and the server‘s switchover period. Numerical results for key performance 

measures are examined across various parameter values. Table 3 presents a comparison of the expected queue 

length (𝐿q) for both delayed and single vacation scenarios, with graphical representation of the variations. It is 

observed that the proposed model results in a significantly lower 𝐿q compared to existing models. This indicates 
a reduction in customer waiting time, primarily due to the inclusion of accessible units in the ongoing service 

batch. The accessible batch service not only improves efficiency but also offers more cost-effective and 

responsive service delivery within the system. 
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