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ABSTRACT 
Parallel fields of planes were used by Patterson (1953) to characterize Kaehler manifolds, and Sasaki (1960) 

predicted differentiable manifolds having specific structures that are intimately associated with almost contact 

structures. Additionally, the conformal symmetric tensor of Kaehlerian manifolds was discussed by Negi and 
Sulochana (2021). We obtained an almost contact metric structure on an odd dimensional sphere in this article. 

Again, we discover the submanifold of the virtually contact metric manifold in the metric compound structure 

and the odd-dimensional sphere. 
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I. INTRODUCTION 

Let (ℳ, 𝐹) is an 𝑛-dimensional almost contact metric manifold where 𝐹 is the nearly complex structure and ℳ 

is an almost contact metric structure. The components of   and 𝐹 with regards to a local coordinate system 

(𝑥𝑎) were now represented by the notation ℳ𝜆𝜇  and 𝐹𝜆𝑎. If the identity tensor is indicated by 𝐼 =(𝛿𝜆𝑎).  
then the  structure  satisfies  the equations 

 

As well as 

 

If we put the covariant components of 𝐹  as 

 

Then 𝜆 and 𝜇 are skew-symmetric in 𝐹𝜇𝜆. If we suppose that an 𝑚-dimensional Riemannian manifold 𝑀 is 

immersed isometrically in ℳ, we can use the parametric equations 

 

Now, using a local coordinate system (𝑦𝑕) of 𝑀. 

Assume this: 

 

The 𝑛 vectors  𝑖𝑎 and 𝐶𝑞𝑎 span the tangent space (𝑀) of   at every point of 𝑀, where 𝐶𝑞𝑎 𝑙 is mutually 

orthogonal unit normal vector fields of 𝑀. Thus, 

 

Therefore, the metric tensor 𝑔 of 𝑀 is associated with 𝐺 of K, so 

 

Taking the contravariant components of 𝑔 by 𝑔𝑖𝑕, then 

 

Consequently, the inverse matrix  −1
 of   is expressed as follows: 
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Using 𝐹 =  −1𝐹 ; we now write 

 

Next, the constitues of the four types of 𝐹 are provided by 

 

Assuming that 𝐹   = (𝐹𝜇𝜆) is skew- symmetric, 

 

Observe that 

 

Is skew-symmetric in 𝑖 and 𝑗, and 

 

Where   and 𝑞 are skew-symmetric. Thus, a (1,1)-tensor,  𝑚  vector  fields,  and (𝑙 − 1)⁄2 scalar fields on 𝑀 

are composed of the sets 𝑓 = (𝑓𝑖𝑕), 𝜈 = (𝜈𝑞𝑕) and 𝑓⊥ = (𝑓𝑞 ). 

The normal vectors 𝐶𝑞𝑎 and the tangent vector transforms  𝑖𝑎 in 𝑀 by 𝐹 are now shown as follows: 

 

On their own range 𝑚 + 1, 𝑚 + 2, … , 𝑛, we use the sequel summation technique to repeated lower indices  , 𝑞, 

𝑟, … Then, the matrix (1.7) satisfies the equation, 

𝐹2
 = −𝐼, Meanwhile, the quantities 𝑓, 𝑣 and 𝑓⊥ are in the relation 

 

The relation (1.6) is equivalent to, 

 

Let an m-dimensional Riemannian manifold 𝑀 admitting a metric tensor 𝑔 and removing the almost contact 

metric manifold ℳ than, (1,1)-tensor field 𝑓, 𝑚 vector fields 𝜈𝑞 and 𝑙(𝑙 − 2)⁄2 scalar fields 

𝑓𝑞  satisfy the relations (1.13),(1.14), (1.15), (1.16) and (1.17). Accordingly, the metric compound structure 

on 𝑀 𝑖𝑠 (𝑓, 𝑔, 𝜈, 𝑓⊥). 

We consider that, 
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Then the set (𝐹,  ) defines an almost contact Metric structure in the 𝑙 − dimensional Euclidean space  𝑙 

and the product space 𝑀 𝑋  𝑙 of the manifold 𝑀. 

II. ON ALMOST CONTACT METRIC MANIFOLD IN METRIC COMPOUND STRUCTURE 

Theorem 2.1. Let 𝑓 and 𝑔 constitute an almost contact metric structure (𝑓, 𝑔, 𝜉, 𝜂) on 𝑀 and (𝑓, 𝑔, 𝜈, 𝑓⊥) be a 

metric compound structure on 𝑀, then its necessary and sufficient that 𝑓⊥ and 𝑔⊥ constitute  an  almost  

contact metric structure (𝑓⊥, 𝑔⊥, 𝜐) on  𝑙 at every point of 𝑀. 

Proof. Assuming that the metric tensor 𝑔, the tensor field 𝑓, and an approximately almost contact metric 

structure on 𝑀 are composed of a covariant vector field 𝜂 = (𝜂𝑖) and a contravariant vector field 𝜉 = (𝜉𝑕), then 

 

We know that the dimension 𝑚 of 𝑀 is odd and the rank of 𝑓 = (𝑓𝑗 ) is equal to 𝑚 −1. 

Comparison (1.17) with (2.4), we get 

 

The Above equation shows that the product of the matrix (𝜈𝑞𝑖) with the transpose is of rank 1 and so that the 

matrix (𝜈𝑞𝑖) by itself is of rank 1. 

 

Where 𝜐𝑞 are proportional factors. Since 

 

The equations (1.15) and (1.16) are reduced to 

 

and 

 

Respectively. For every point of 𝑀, where 𝑔⊥ = (𝛿𝑞 ) and the dimension 𝑙 of  𝑙 is odd. the set (𝑓⊥, 𝑔⊥, 𝜐) 

forms an almost contact metric structure on  𝑙 according to equations (2.7), (2.8) and (2.9). 

If, on the other hand, the metric compound structure (𝑓, 𝑔, 𝜈, 𝑓⊥) introduces  an almost contact metric 

structure  (𝑓, 𝑔, 𝜉, 𝜂) on 𝑀, we demonstrate that the almost  contact  metric  structure (𝑓⊥, 𝑔⊥, 𝜐) on  𝑙 

at every point of 𝑀. Then we get. 

Theorem 2.2. Let us assume that a metric compound structure (𝑓, 𝑔, 𝜈, 𝑓⊥) is almost contact metric structure 

if and only if the 𝑙 vector fields 𝜈𝑞 are all parallel to one another, meaning that the matrix (𝜈q 𝑖) is of 
rank 1. 

We have applying this by Theorem 2.1. 

Theorem 2.3. If and only if  𝑗𝑖𝑕 = 0, then let (𝑓, 𝑔, 𝑣, 𝑓⊥) be an almost contact metric compound  structure  on  

𝑀  and  let (𝑓, 𝑔, 𝜉, 𝜂) be an almost contact metric structure on 𝑀. Thus, Nijenhuis tensor is vanish. 

Proof. The Nijenhuis tensor of the metric compound structure (1.18) in 𝑀 𝑋  𝑙 is defined by taking 𝜕𝑞 as null 

operators and 

Representing 𝜕𝑗 = 𝜕⁄𝜕𝑦𝑗. 
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Using (1.18), we can write down  𝐶   as the followings; 

 

 

Consequently, the above mentioned expressions are simplified to the metric compound structure (𝑓, 𝑔, 𝜈, 𝑓⊥) 

which yields an almost contact metric structures 

 

Because 𝜐𝑞𝜐𝑞=1 and 𝜐𝑞𝜕𝑗𝜐𝑞 = 0. 

Now, the Nijenhuis tensors of the almost contact kaehlerian structure (𝑓, 𝑔, 𝜉, 𝜂) are given by ([4]) 

 

Comparing (2.11) with (2.12), we have the equations 
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Thus, we drive the following from (3.4). 

III. SUBMANIFOLD OF ALMOST CONTACT METRIC MANIFOLD IN ODD-DIMENSIONAL 

SPHERE 

A pseudo-umbilical submanifold of an even-dimensional Almost Contact metric manifold ℳ2𝑛+4
 that satisfies 

𝜆2
 + 𝜇2

 + 𝜈2
 = 1 with (𝑓, 𝑔, 𝑢, 𝑣, 𝑤, 𝜆, 𝜇, 𝜈) structure, where a sphere and a complicated cone with a generator 

intersect. 

Consider 𝑎 (2𝑛 − 1)-dimensional Riemannian manifold 𝑀2𝑛−1
 that is isometrically immersed in  2𝑛+1

 

by an immersion 𝑖: 𝑀2𝑛−1
 →  2𝑛+1

 and covered by a system of coordinate neighborhoods {𝑉; 𝑦𝑎}. 

Assume that 

 

Let 𝐷𝑕 and 𝐸𝑕 be mutually orthogonal unit normal to  2𝑛+1
, and let each   𝑐 𝑕 is a 2𝑛- 1 linearly 

independent vector of  2𝑛+1
 tangent to 𝑀2𝑛−1

. let 𝑔𝑐𝑏 represents the component of the induces metric 

tensor of 𝑀2𝑛−1
, then 𝑔𝑐𝑏 = 𝑔𝑗𝑖 𝑗 . 

After the transform of 

 

We have 

 

Where 𝑓C
𝑎 indicates the components of a  tensor field of type (1.1) in 𝑀 2𝑛−1 and  𝑢𝑐, 𝑣𝑐 and 𝑤𝑐 are 1-

forms associated with 𝑢𝑎, 𝑣  and 𝑤𝑎  respectively. The vector field 𝑢𝑕 is entered as follows: 

 

Both 𝜇 and 𝜈 are functions in 𝑀 
2𝑛−1

 since 𝑢𝑎 is a vector field,. 

 

 

The equation of Gauss for 𝑀2𝑛−1
 can be written as follows,  representing the  operator ∇𝑐 for the vander 

Waerden- Bortotti covariant differentiation: 
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Where 𝑘𝑐𝑏  and 𝑙𝑐𝑏 are the second fundamental tensors with respect to 𝐷𝑕 and 𝐸𝑕, respectively. 

The equation of Weingarten are given by 

 

 

being the third fundamental tensor. The normal  bundle if 𝑙𝑐 vanishes identically. After that, the Gauss 
equation is obtained from (1.2) by 

 

Considering (1.5), (2.2), (2.6) (2.7), and  (2, 8), and differentiating (2.1) and (2.2) covariantly along 

𝑀2𝑛−1
, we have 

 

Theorem3.1. An even-dimensional Almost contact metric manifold ℳ2𝑛+4 
with a pseudo-umbilical 

submanifold 𝑀2𝑛+1
 whose (𝑓, 𝑔, 𝑢, 𝑣, 𝑤, 𝜆, 𝜇, 𝜈)- structure satisfies 𝜆2

 + 𝜇2
 + 𝜈2

 = 1. Then, a complex 

cone with a generator as a normal vector intersects a sphere at 𝑀2𝑛+1
. 

Proof. Consider that an almost contact metric structure (𝑓b
𝑎, 𝑔𝑐𝑏, 𝑢𝑎) is admitted by 𝑀2𝑛−1

, which is 
defined by 

 

Using (3.3), (3.5), and (3.13), we get 

 

Equations (3.5) and (3.14) indicates that 

 

Putting (3.16) into (3.15), then 

 

By (3.5), Adding equation (3.16) and (3.17), then 

 

Equations (3.9) and (3.12) implies that 
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Thus, a sasakian structure is expressed by the structure 

 

Hence, we get: 

Theorem 3.2. An odd – dimensional submanifold 𝑀2𝑛−1
 of a sphere  2𝑛−1

 of codimension 2. As a submanifold 

of codimension 2 of an Almost contact metric manifold ℳ2𝑛+2
 is pseudo-umbilical. If 2𝑛 − 1 is minimal. 

Proof. By substituting (3.16) and (3.18), we obtain 

 

Now, using (3.17), and contracting the previous equation with respect to b and c, 

 

Since, 𝑘𝑐𝑏 are symmetric and 𝑓𝑐𝑏 is skew- symmetric with respect to b and c. Using (3.11), (3.16), (3.18) and 
(3.17), 

 

Therefore, the mean curvature vector is certain by 

 

Using (3.19) in (3.20), then we have 𝐻𝑕 = 0, The above expression indicates that 𝑀2𝑛−1
 is a minimal 

submanifold. 
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