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ABSTRACT 

Electroencephalography (EEG) provides a promising non-invasive modality for depression diagnosis by 

capturing brain activity patterns. However, conventional machine learning and deep learning techniques 

struggle to model the complex spatio-temporal and higher-order inter-channel relationships present in EEG 

signals. This review explores recent advancements in graph and hypergraph neural network architectures—

particularly Graph Convolutional Networks (GCNs), Hypergraph Convolutional Networks (HGCNs), and 

spatio-temporal fusion methods—for EEG-based depression detection. The study systematically analyzes 

existing approaches and identifies key research limitations, including oversimplified graph construction, 

inadequate integration of spatial-temporal features, poor generalizability due to inter-subject variability, and 

redundancy in feature representation. Emphasis is placed on the need for unified, adaptive models that can 

effectively capture individual-specific brain dynamics and higher-order channel interactions. This work 

provides a critical synthesis of the current landscape and outlines future directions for developing robust and 

interpretable EEG-based diagnostic tools for mental health assessment. 

Keywords: EEG-based Depression Detection, Graph Neural Networks, Hypergraph Convolution, Spatio-
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1. INTRODUCTION 

Depression is a multifaceted and widespread mental health disorder characterized by persistent feelings of 

sadness, loss of interest, and impaired emotional, cognitive, and behavioral functioning. It affects millions 

globally and is recognized as a leading cause of disability by the World Health Organization (WHO). Beyond 

its psychological symptoms, depression is often accompanied by neurobiological alterations, including 

disrupted brain connectivity and imbalanced neurotransmitter activity. The complexity and heterogeneity of 

depressive symptoms make early detection and accurate diagnosis particularly challenging [1-2]. 

Traditional diagnostic methods primarily rely on subjective tools such as clinical interviews, behavioral 

observations, and self-report questionnaires like the Beck Depression Inventory (BDI). While these tools are 

widely used, they are susceptible to biases, underreporting, and misinterpretation, often leading to delayed 

diagnosis or inappropriate treatment plans.In this context, Electroencephalography (EEG) has emerged as a 

promising neuroimaging modality for the objective assessment of depression. EEG records electrical activity 

generated by neuronal firing across different regions of the cerebral cortex, offering a non-invasive, cost-

effective, and temporally precise window into brain function. Unlike other imaging techniques such as fMRI or 

PET, EEG provides real-time insights into the dynamic interplay of neural networks.Importantly, research has 

shown that individuals with Major Depressive Disorder (MDD) often exhibit abnormal EEG patterns, such as 

altered alpha asymmetry, decreased coherence, and disrupted functional connectivity [3-4]. These 

electrophysiological markers highlight the potential of EEG as a biomarker for detecting depressive 

states.Recent advances in artificial intelligence—particularly in machine learning and deep learning—have 

revolutionized the analysis of EEG signals. However, conventional models frequently overlook the topological 

structure and temporal evolution inherent in EEG data. This has led to growing interest in graph-based 

approaches, which model EEG channels as nodes and their interdependencies as edges, allowing for a more 

nuanced understanding of brain network dynamics in depression [5]. 

This review paper aims to examine recent developments in EEG-based depression detection, focusing on spatio-

temporal and graph-based deep learning methods. We analyze the methodologies, highlight current challenges, 

and identify research gaps to guide future work in building more robust and interpretable models for mental 

health diagnostics. 
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Fig.1 Graph convolution network-based EEG signal analysis 

2. RELATED WORK 

In recent years, the application of deep learning to analyse EEG-based brain activity has shown significant 

potential in the automated detection of depression. The literature on EEG-based depression detection broadly 

falls into two categories: conventional machine learning (ML) approaches and deep learning (DL)-based 

methods. 

Machine Learning (ML)-Based Approaches: Traditional ML techniques typically rely on handcrafted 

features extracted from EEG signals. These features include statistical characteristics, power spectral densities, 

alpha asymmetry, signal entropy, and brain laterality. In many studies, channel-wise EEG data are processed 

using techniques like spectrum analysis, functional connectivity measures, and network-based features to train 

classifiers such as Support Vector Machines (SVM), k-Nearest Neighbour (KNN), and Random Forests. While 

effective to an extent, these methods often fail to generalize due to variability in EEG signals and limited ability 

to model spatial or temporal dynamics. 

Deep Learning (DL)-Based Approaches: To overcome the limitations of manual feature extraction, DL 

models such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and 

their hybrids (e.g., CNN-LSTM, Deep Hybrid Neural Networks) have been widely adopted. CNNs are primarily 

employed to learn spatial features from EEG signal maps, treating them as 2D inputs, whereas LSTMs and 

GRUs (Gated Recurrent Units) model temporal dependencies in the sequential EEG data. For example, studies 

such as [5], [6], and [7] use CNNs to extract frequency-based features like Theta, Alpha, and Beta waves, 

followed by LSTM or GRU networks for temporal classification. While these architectures improve upon 

traditional ML methods, they often treat spatial and temporal features in isolation, missing out on the rich inter-

channel interactions within EEG signals. 

Graph-Based Deep Learning Models: More recently, researchers have explored the graph-based nature of 

EEG data, treating EEG channels as nodes and defining edges based on functional or spatial relationships. 

Graph Convolutional Networks (GCNs) and their variants have been used to capture this topological structure. 

In [8], differential entropy features were used to generate adjacency matrices using Pearson correlation. Other 

works, such as [9] and [10], employ attention mechanisms or phase-locking values to construct graphs, but these 

often rely on predefined, static connectivity patterns that fail to reflect the dynamic nature of brain activity. 

Some models like [11] use Euclidean distance between electrodes to define channel relationships, which 

simplifies the spatial structure but disregards the strength or context of functional interactions. In [12], self-

attention mechanisms were introduced to rank channels by importance, but they lacked the ability to capture 

hierarchical or inter-layer dependencies. These approaches, though innovative, often struggle to model the 

temporal evolution of brain networks or adapt to individual variability among subjects. 

Spatio-Temporal Fusion Limitations: Despite advancements, a persistent challenge in EEG-based depression 

detection is the integration of spatial and temporal information. Most studies extract spatial features using 

CNNs and process temporal dependencies separately using RNNs or GRUs, as seen in works like [13]. 

However, these methods fall short in modelling how inter-channel relationships evolve over time. The majority 

of models process EEG data as independent frames or sequences, which does not fully leverage the spatio-

temporal richness inherent in brain signals. 

Graph Spatio-Temporal Models and Limitations: To better capture brain connectivity, spatio-temporal 

graph-based models have emerged. These represent EEG signals as dynamic graphs where nodes (channels) 

evolve over time, and edges (connectivity) reflect changing relationships. Yet, many of these models rely on 
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static, pre-computed adjacency matrices and do not adapt to the unique patterns of each individual. Moreover, 

they often represent only pairwise interactions and fail to model higher-order connections that may be critical in 

identifying depressive symptoms. 

Models such as GCNs [11-13], Self-Attention GNNs [13], and pooling-based networks have made strides in 

learning local-global representations. However, these approaches still lack the ability to model subject-specific 

variations and higher-order channel interactions simultaneously. This underlines the need for unified 

frameworks that can integrate channel-level spatial relations with subject-level temporal dynamics. 

To better illustrate the evolution of techniques used in EEG-based depression detection, Table 1 provides a 

concise comparison of traditional Machine Learning (ML), Deep Learning (DL), Graph Convolutional 

Networks (GCNs), and Hypergraph Convolutional Networks (HGCNs). The comparison highlights their 

methodological foundations, core strengths, and critical limitations. 

Table 1. Comparative Summary of Key EEG-Based Depression Detection Methods 

Method Approach Strengths Limitations 

Machine Learning (ML) Handcrafted features 

(e.g., entropy, PSD, 

alpha asymmetry); 

classifiers like SVM, 

KNN, RF 

Simple, interpretable, 

requires small datasets 

Limited spatial-temporal 

modeling, low 

generalizability 

Deep Learning (DL) CNNs for spatial 

patterns; LSTM/GRU 

for temporal patterns; 

hybrids (e.g., CNN-

LSTM) 

Learns features 

automatically; better 

than ML in accuracy 

Treats spatial and 

temporal aspects 

separately; ignores 

topological structure 

Graph Convolutional 

Networks (GCNs) 

EEG channels as nodes; 

edges from correlations 

or distances; static 

adjacency matrix 

Captures 

topological/channel 

relationships; local-

global modeling 

Fixed connectivity; 

ignores higher-

order/channel 

redundancy 

Hypergraph 

Convolutional Networks 

(HGCNs) 

Uses hyperedges for 

modeling multi-channel 

dependencies 

Models higher-order 

relationships; better 

spatial info 

Computationally 

complex; lacks dynamic 

adaptation over time 

3. RESEARCH GAPS 

Despite the notable progress made in EEG-based depression detection, several critical research gaps persist in 

the current body of work: 

1. Limited Representation of Higher-Order Brain Connectivity: Most existing models utilize pairwise 

connections to represent relationships between EEG channels. However, such binary interactions fail to 

capture the complex and higher-order functional dependencies inherent in brain networks. The brain's 

connectivity structure is inherently multi-dimensional, requiring models that can go beyond simplistic 

adjacency matrices to better reflect neural dynamics. 

2. Inadequate Fusion of Spatial and Temporal Dependencies: While many studies effectively model 

spatial (e.g., using CNNs or GCNs) and temporal (e.g., using LSTM or GRU) patterns independently, there 

is a lack of unified frameworks that can simultaneously and effectively fuse both types of information. This 

leads to sub-optimal modeling of how neural signals evolve over time within and across different brain 

regions. 

3. Oversimplified Graph Construction Techniques: A large number of graph-based methods construct 

adjacency matrices using fixed metrics like Euclidean distance between electrode positions. This approach 

overlooks the fact that functionally meaningful brain interactions may not always correspond to spatial 

proximity. Ignoring the strength and context of these inter-channel interactions weakens the discriminative 

power of such models. 

4. Neglect of Inter-Subject Variability: Existing models often represent EEG signals using 3D tensors or 

static structures that fail to consider variations in brain activity across different individuals. As a result, the 

learned representations may not generalize well across populations, limiting the clinical applicability of 

these methods. 
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5. Redundancy in Brain Network Modeling: Many approaches suffer from including redundant channel-

channel relationships, especially among spatially adjacent electrodes that capture similar signals. This leads 

to inflated and noisy feature spaces, making it difficult for models to focus on informative patterns relevant 

to depression detection. Although attention and pooling mechanisms have been proposed to mitigate this 

issue, a more effective solution would involve explicit redundancy reduction during graph construction. 

4. CONCLUSION 

This paper systematically reviews the progression of EEG-based depression detection methods, emphasizing the 

transition from traditional machine learning to advanced deep learning, and more recently to graph-based and 

hypergraph neural network models. Among these, Graph Convolutional Networks (GCNs) have proven 

effective in modeling the topological structure of EEG channels, while Hypergraph Convolutional Networks 

(HGCNs) further enhance this by capturing higher-order interactions, offering improved representation of brain 

connectivity patterns. These graph-based methods outperform conventional approaches in capturing spatial-

temporal dynamics critical for identifying depressive states. However, challenges such as static graph 

construction, limited inter-subject generalization, and redundancy in brain network modeling persist. 

5. FUTURE WORK 

Future research should focus on dynamic graph construction, subject-specific adaptation, and reducing 

redundancy in EEG channel connectivity. Lightweight models for real-time diagnosis using wearable devices 

also hold strong potential for practical deployment. 
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