#### POWER SYSTEM SECURITY ASSESSMENT OF AN INTERCONNECTED POWER SYSTEM CONSIDERING VOLTAGE DEPENDENT LOADS WITH DYNAMIC TAP CHANGER / EXPONENTIAL RECOVERY LOADS WITH VARIOUS FACTS DEVICES

#### T. A. Ramesh Kumar

Assistant Professor, Department of Electrical Engineering, Annamalai University, Chidambaram

#### ABSTRACT

This paper proposes the security enhancement depending on system conditions, the dynamic behaviour of the reactive part of loads can be more significant than the real part. This paper had indicated that the dynamic load models will not only affect the damping of electromechanical modes, but can also have an influence on which generators participated in the mode. As load parameters vary, this participation can also vary. In this approach, with voltage dependent loads with dynamic tap changer / exponential recovery loads are considered for the quick restoration few FACTS devices are incorporated with boundary values. The security enhancement results are provided to highlight the overall security and suitability of the approach. The significant of the corrective measures to be adopted for the load uncertainty was also considered with load parameters variation. The proposed scheme is adopted in IEEE 14 bus test system. The optimized result can be utilized for the improvement of the system performance.

Keywords: Flexible AC Transmission System (FACTS), Interline Power Flow Controller (IPFC), Mixed Load and Thermostatically Controlled Loads

#### I. INTRODUCTION

This proposes the overview of control strategies for power system security assessment of an interconnected power system considering Voltage Dependent Load with Dynamic tap changer / Exponential Recovery Loads which is governed by the Flexible AC Transmission System (FACTS) devices when the system is approaching an extreme emergency state [1,2]. In this method, the island is prevented from the total loss of supply using few FACTS devices. The proposed scheme is adopted in IEEE 14 bus test system. The optimization process is carried out using bacterial foraging optimization algorithm. The optimized result exhibits tremendous improvement in the system performance. The basic restoration assessment for the interconnected power system considering Voltage Dependent Load Voltage Dependent Load with Dynamic tap changer/ Exponential Recovery Loads has been carried out and various control corrective actions using few FACTS devices are considered for the power system security enhancement [3,4]. The maximum allowable transfer level is then fixed at the last acceptable level after performing various levels of power transfers for various credible contingencies[5,6], or reduced by some small amount to provide a margin that would account for changes in conditions when the actual limit is in force.

# II. MATHEMATICAL MODELING OF VOLTAGE DEPENDENT LOADS WITH DYNAMIC TAP CHANGER (VDTL)

Voltage Dependent Loads with Dynamic Tap Changer are nonlinear load model which represents the power relationship to voltage as an exponential equation [7,8]. The transformer model consists of an ideal circuit with tap ratio *n*, hence the voltage on the secondary winding is  $v_s = v/n$ . The voltage control is obtained by means of a quasi-integral anti-windup regulator. Where  $v_s$  = secondary bus voltage and v = primary bus voltage of the transformer. The load powers P<sub>H</sub> and Q<sub>H</sub> are preceded as negative power as these powers are absorbed from the bus, as follows

$$-P_{\rm H} = P_{0} \, (v/n)^{\gamma p} \tag{2.1}$$

$$-Q_{\rm H} = Q_0 \left( v/n \right)^{\gamma q} \tag{2.2}$$

and the differential equation is

$$\dot{m} = K_d n + K_i \left( \frac{V}{n} - V^{ref} \right)$$
(2.3)

Where  $K_d$  is the Anti-windup regulator deviation  $K_i$  is the Anti-windup regulator gain.  $\gamma_p$  and  $\gamma_q$  the active and reactive power exponents. The reference voltage sign is negative due to the characteristic of the stable equilibrium point. If voltage dependent loads with embedded dynamic tap changer are initialized after the power flow analysis, the powers  $P_0$  and  $Q_0$  are computed based on the constant PQ load powers  $P_{L0}$  and  $Q_{L0}$  as (2.5 and 2.6) and the state variable *n* and the voltage reference  $v_{ref}$  are initialized as follows

Volume 2, Issue 4: October - December, 2015

$$-m_0 = V_0$$
 (2.4)

$$V_{ref} = 1 + \frac{K_d}{K_i} V_0$$

Where  $v_0$  is the value of the initial load bus voltage obtained from power flow solution. The parameters of this model are  $\gamma_p$ ,  $\gamma_q$  and  $P_0$  and  $Q_0$  are the values of the active and reactive power at the initial conditions. Common values for the exponents of the model for different load components  $\gamma_p$  and  $\gamma_q$  are (0, 1, 2). The value of  $P_0$  and  $Q_0$  depends on the status parameter (k). If k =1, the Voltage Dependent Loads with Dynamic Tap Changer is initialized after the power flow analysis [9,10], and  $P_0$  and  $Q_0$  are the percentage PQ load connected at the Voltage Dependent Loads with Dynamic Tap Changer.

$$P_{0} = \frac{K_{P}}{100} P_{L}$$
(2.5)

$$Q_{0} = \frac{K_{Q}}{100} Q_{L}$$

$$(2.6)$$

Where  $K_P$  and  $K_Q$  are Active and Reactive power rating of the loads and  $P_L$  and  $Q_L$  are the Active and Reactive load powers.

#### III. MATHEMATICAL MODELING OF EXPONENTIAL RECOVERY LOAD (ERL)

The load model is represented using the power relationship to voltage as an exponential equation as

$$\dot{x}_{p} = -\frac{x_{p}}{T_{p}} + p_{s} - p_{t}$$
(2.7)

Where p<sub>s</sub> and p<sub>t</sub> are the static and transient real power absorptions, which depends on the load voltage

$$-P_{s} = P_{0} \left(\frac{V}{V_{0}}\right)^{\gamma s}$$

$$-P_{t} = P_{0} \left(\frac{V}{V_{0}}\right)^{\gamma t}$$

$$(2.8)$$

Where  $\gamma t$  is a static active power exponent,  $\gamma s$  is a dynamic active power exponent,  $\beta_s$  is a static reactive power exponent,  $\beta_t$  is a dynamic reactive power exponent of the load models, V is the actual voltage and V<sub>o</sub> is the nominal voltage.

Similar equation holds for the reactive power

 $\dot{x_q} = \frac{-x_q}{T_q} + q_s - q_t$   $-\mathcal{Q}_H = \frac{x_q}{T_q} + q_t$   $-\mathcal{Q}_s = \mathcal{Q}_0 \left(\frac{V}{V_0}\right)^{\beta s}$   $-\mathcal{Q}_t = \mathcal{Q}_0 \left(\frac{V}{V_0}\right)^{\beta t}$  (2.10)

Where  $Q_s$  is the Static reactive load power as a function of bus voltage magnitude and  $Q_s$  is the Dynamic reactive load power as a function of bus voltage magnitude. The power flow solution and the PQ load data are used for determining the value of  $P_o$ ,  $Q_o$ , and  $V_o$ .

The parameters of the load can be defined based on the PQ load powers  $P_{L0}$  and  $Q_{L0}$ . Where  $v_0$  is the initial voltage of the load bus and is obtained from the power flow solution. Other parameters of ERL is initialized after the power flow analysis [11,12], the parameters can be defined based on the PQ load powers  $P_{L0}$  and  $Q_{L0}$ .

ISSN 2394 - 7780

Volume 2, Issue 4: October - December, 2015

$$g = \frac{g}{100} \frac{P_{L0}}{v_0^2}, \qquad I_p = \frac{I_p}{100} \frac{P_{L0}}{v_0}, \qquad P_m = \frac{p_m}{100} P_{L0}$$

$$b = \frac{b}{100} \frac{Q_{L0}}{v_0^2}, \qquad I_q = \frac{I_q}{100} \frac{Q_{L0}}{v_0}, \qquad q_m = \frac{q_m}{100} Q_{L0}$$

In this case initial voltage  $V_0$  is also not known, thus following equation is used.

$$-p_{H} = gv^{2} + I_{p}v + p_{m}$$
(2.11)

$$-q_H = bv^2 + I_q v + q_m ag{2.12}$$

The parameters are constants and indicate the nominal power which is divided into constant power, constant current and constant impedance.

#### **IV.COMPUTATION OF VOLTAGE COLLAPSE PERFORMANCE INDICES (VCPI)**

With the power flow model, Jacobian Matrix J represents the first derivatives of active and reactive power mismatch equations,  $\Delta P = \Delta P(\theta, E)$  and  $\Delta Q = \Delta Q(\theta, E)$ , with respect to the voltage magnitude E and angles  $\theta$ , i.e., the linearization of these equations yields

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = J \begin{bmatrix} \Delta \theta \\ \Delta E \end{bmatrix}$$
(4.42)

Where  $[\Delta P]$ ,  $[\Delta Q]$ ,  $[\Delta \theta]$  and  $[\Delta E]$  are the increments change in nodal bus powers, reactive power, angles and voltage magnitudes.

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix}$$
(2.13)

$$J_1 = \frac{\partial P}{\partial \theta}, \quad J_2 = \frac{\partial P}{\partial E}, \quad J_3 = \frac{\partial Q}{\partial \theta}, \quad J_4 = \frac{\partial Q}{\partial E}$$
(2.14)

The voltage stability of the system is affected by both P and Q. However, at each operation point we keep P constant and evaluate voltage stability by considering the incremental relationship between Q and (E or V). This is analogous to the Q-V curve approach. In [13,14], the authors proposed to reduce the load-flow Jacobian to the first derivative of reactive power equations in relation to voltage magnitude, by assuming that the generator and load buses present no active power variation, i.e.,  $\Delta P = 0$ . Thus,

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta E \end{bmatrix}$$
(4.45)

$$\left[\Delta\theta\right] = -\left[J_{P\theta}\right]^{-1} \cdot \left[J_{PE}\right] \cdot \left[\Delta E\right]$$
(2.15)

$$\left[\Delta Q\right] = \left[J_{Q\theta}\right] \quad \left[\Delta E\right] + \left[J_{QE}\right] \quad \left[\Delta E\right] \tag{2.16}$$

After substituting  $[\Delta \mathcal{G}], [\Delta Q]$ 

$$[\Delta Q] = \left( \begin{bmatrix} J_{QE} \end{bmatrix} - \begin{bmatrix} J_{Q\theta} \end{bmatrix} \cdot \begin{bmatrix} J_{P\theta} \end{bmatrix}^{-1} \cdot \begin{bmatrix} J_{PE} \end{bmatrix} \cdot \begin{bmatrix} \Delta E \end{bmatrix} \right)$$
(2.17)

or

$$\left[\Delta Q_{l_{oad}}\right] = \left[J\right] \left[R\right] \left[\Delta E_{l_{oad}}\right]$$
(2.18)

$$\Delta Q = \left(J_4 - J_3 J_1^{-1} J_2\right) \Delta E = JR \ \Delta E \tag{2.19}$$

Where

$$[J].[R] = \left( \left[ J_{QE} \right] - \left[ J_{Q\theta} \right] \cdot \left[ J_{P\theta} \right]^{-1} \cdot \left[ J_{PE} \right] \right)$$

(2.20)

Volume 2, Issue 4: October - December, 2015

$$\begin{bmatrix} \Delta V_{l_{oad}} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} R \end{bmatrix}^{-1} \cdot \begin{bmatrix} \Delta Q_{l_{oad}} \end{bmatrix}$$

$$\Delta E = \begin{pmatrix} J_4 - J_3 J_1^{-1} J_2 \end{pmatrix}^{-1} \Delta Q = J R^{-1} \Delta Q$$
(2.21)
(2.22)

Where  $\begin{bmatrix} J \end{bmatrix} \begin{bmatrix} R \end{bmatrix}^{-1}$  is called inverse reduced V-Q Jacobian matrix. Its i<sup>th</sup> diagonal element is the V-Q sensitivity at the bus i.

Few parameters can be directly measured and can be used in real time application to compute proximity to collapse index quickly. An example of such indicator is sensitivity of the generated reactive powers with respect to load parameters and voltage magnitude. Voltage Collapse Performance Index (VCPI) is obtained using sensitivity analysis computation using the relation between voltage change and reactive power change and the elements of the inverse of the reduced Jacobian matrix JR are Q-V sensitivities. The diagonal components  $\partial Vi/\partial Qi$  are the self sensitivities and the nondiagonal elements  $\partial Ek/\partial Qi$  are the mutual sensitivities [15,16]. The sensitivities of voltage controlled buses are equal to zero. For a quite stable system when Q decreases at specified bus or buses, its effect on the voltage magnitude of the system buses should be minor. The sensitivity indices are interpreted as follows:

*Positive sensitivities:* Stable operation; the smaller the sensitivity, the more stable the system. As stability decreases, the magnitude of the sensitivity increases, becoming infinite at the stability limit (maximum loadability).

Negative sensitivities: Unstable operation. The system is not controllable, because all reactive power control devices are designed to operate satisfactorily when an increase in Q is accomplished by an increase in V.

#### **III. IN BFO FINNALY BY ELIMINATION AND DISPERSAL**

In order to keeping the number of bacteria in the population constant, if a bacterium is eliminated, simply disperse one to a random location on the optimization domain [17,18].

**Problem Formulation** 

$$Min \ J = k_2 \ p_i^2 + k_1 \ p_i + k_0$$

Subject to:

$$P_{\min} \leq P \leq P_{\max}$$
;  $Q_{\min} \leq Q \leq Q_{\max}$ ;  $V_{\min} \leq V \leq V_{\max}$ 

Where  $k_0$ ,  $k_1$ ,  $k_2$  are cost coefficient and  $p_i$  are the parameters to be optimised [19,20].

#### V.SIMULATION RESULTS AND OBSERVATIONS

IEEE 14 bus system is considered for the Stability Assessment studies. The performance analysis of a IEEE 14bus, 5-generator system coordinated with different types of Dynamic load models especially VDL with dynamic tap changer/ ERL without / with FACTS devices were studied. And the optimum utilization requirement with the FACTS devices for each load was determined using BFO technique. In this case of study the buses 4, 5 and 14 are connected with VDTL and ERL Loads. The FACTS devise are connected as follows

- 1. SVC at Buses 4, 5 and 14.
- 2. UPFC between Buses 4 and 5, i.e. in Line 7.
- 3. UPFC between Buses 14 and 13, i.e. in Line 20.
- 4. IPFC between Buses 4 and 5, i.e. between Lines 7 and 9.
- 5. IPFC at Bus 14 i.e. in between Lines 17 and 20

(2.23)

ISSN 2394 - 7780

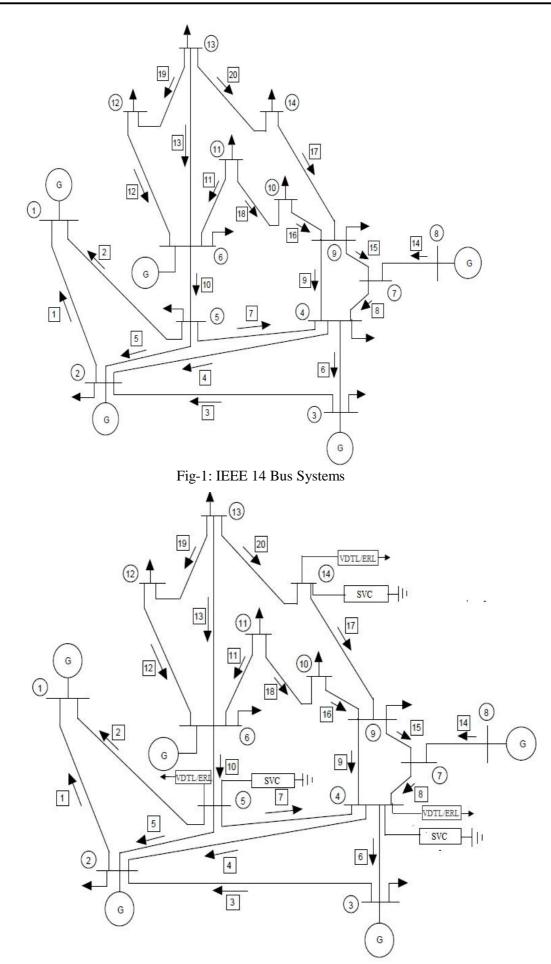



Fig-2: Single line diagram representation of IEEE 14 bus system with various SVC controllers

ISSN 2394 - 7780

Volume 2, Issue 4: October - December, 2015

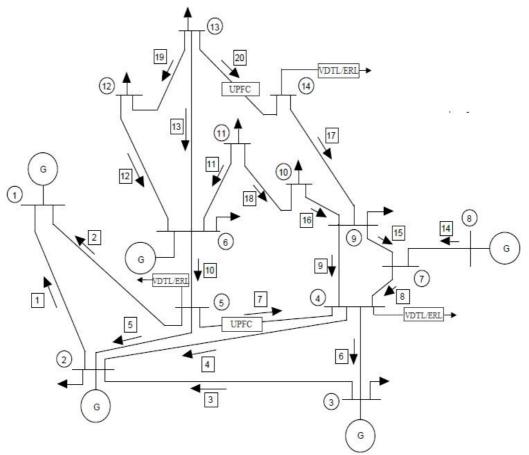



Fig-3: Single line diagram representation of IEEE 14 bus system with various UPFC controllers

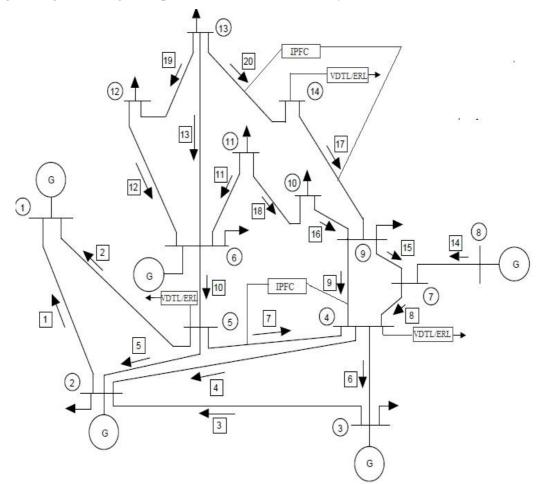



Fig-4: Single line diagram representation of IEEE 14 bus system with various IPFC controllers

#### Table-1: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer in bus 4, 5 and bus 14

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.0000        | 2.3045     | -0.4347               |
| 2       | 1.0000            | -5.962        | 0.1830     | 0.6624                |
| 3       | 0.9800            | -14.773       | -0.9420    | 0.3103                |
| 4       | 0.9602            | -11.694       | -0.4780    | 0.0390                |
| 5       | 0.9616            | -10.009       | -0.0760    | -0.0160               |
| 6       | 1.0000            | -16.570       | -0.1208    | 0.1122                |
| 7       | 0.9766            | -15.192       | 0.0000     | 0.0000                |
| 8       | 1.0000            | -15.191       | 0.0000     | 0.1328                |
| 9       | 0.9607            | -17.071       | -0.3093    | -0.1740               |
| 10      | 0.9595            | -17.309       | -0.0900    | -0.0580               |
| 11      | 0.9757            | -17.075       | -0.0350    | -0.0180               |
| 12      | 0.9822            | -17.549       | -0.0610    | -0.0160               |
| 13      | 0.9753            | -17.597       | -0.1350    | -0.0580               |
| 14      | 0.9474            | -18.488       | -0.1490    | -0.0500               |

#### Table-2: Weak bus identification using VCP indices with VDTL

| BUS | VCP INDICES |
|-----|-------------|
| 4   | 37.1572     |
| 5   | 34.1539     |
| 14  | 23.1476     |
| 7   | 19.0196     |
| 10  | 14.1100     |
| 13  | 10.3469     |
| 11  | 8.2719      |
| 12  | 5.3153      |
| 9   | 5.0101      |

#### Table-3: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and SVC in bus 4

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2794     | -0.0659               |
| 2       | 1.0000            | -5.43         | 0.2473     | -0.0326               |
| 3       | 0.9900            | -14.23        | -0.9420    | 0.3034                |
| 4       | 0.9800            | -11.41        | -0.4780    | 0.0430                |
| 5       | 0.9763            | -9.66         | -0.0591    | 0.0232                |
| 6       | 1.0000            | -16.06        | -0.1208    | -0.0157               |
| 7       | 0.9855            | -14.83        | 0.0000     | 0.0000                |
| 8       | 1.0000            | -14.83        | 0.0000     | -0.0822               |
| 9       | 0.9692            | -16.70        | -0.3093    | -0.1740               |
| 10      | 0.9666            | -16.91        | -0.0900    | -0.0580               |
| 11      | 0.9793            | -16.62        | -0.0350    | -0.0180               |
| 12      | 0.9829            | -17.04        | -0.0610    | -0.0160               |
| 13      | 0.9766            | -17.10        | -0.1350    | -0.0580               |
| 14      | 0.9528            | -18.05        | -0.0490    | -0.0500               |

Volume 2, Issue 4: October - December, 2015

| Table-4: H | Power | flow s | solution f | or IEE | E 14 Bi | us systems | with VDI | with Dynamic t | tap changer and SVC in bus . | 5 |
|------------|-------|--------|------------|--------|---------|------------|----------|----------------|------------------------------|---|
|            | -     |        |            |        |         |            |          |                |                              |   |

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | - 0.00        | 2.2790            | -0.0764               |
| 2       | 1.0000            | -5.42         | 0.2472            | -0.0580               |
| 3       | 0.9900            | -14.24        | -0.9420           | 0.3451                |
| 4       | 0.9729            | -11.26        | -0.4780           | 0.0390                |
| 5       | 0.9800            | -9.70         | -0.0591           | 0.0196                |
| 6       | 1.0000            | -16.06        | -0.1208           | 0.0158                |
| 7       | 0.9824            | -14.73        | 0.0000            | 0.0000                |
| 8       | 1.0000            | -14.73        | 0.0000            | -0.1001               |
| 9       | 0.9663            | -16.61        | -0.3093           | -0.1740               |
| 10      | 0.9641            | -16.84        | -0.0900           | -0.0580               |
| 11      | 0.9780            | -16.59        | -0.0351           | -0.0180               |
| 12      | 0.9827            | -17.04        | -0.0610           | -0.0i60               |
| 13      | 0.9762            | -17.10        | -0.1350           | -0.0580               |
| 14      | 0.9510            | -18.00        | -0.1495           | -0.0490               |

Table-5: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and SVC in bus 14

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2801            | -0.0337               |
| 2       | 1.0000            | -5.45         | 0.2473            | -0.1437               |
| 3       | 0.9900            | -14.34        | -0.9420           | 0.3752                |
| 4       | 0.9666            | -11.24        | -0.4780           | 0.0390                |
| 5       | 0.9682            | -9.56         | -0.0594           | 0.0229                |
| 6       | 1.0000            | -15.95        | -0.1208           | 0.0193                |
| 7       | 0.9839            | -14.75        | 0.0000            | 0.0000                |
| 8       | 1.0000            | -14.75        | 0.0000            | -0.0888               |
| 9       | 0.9729            | -16.63        | 0.3093            | -0.1740               |
| 10      | 0.9696            | -16.83        | -0.0900           | -0.0580               |
| 11      | 0.9829            | -16.53        | -0.0350           | -0.0180               |
| 12      | 0.9862            | -16.98        | -0.0614           | -0.0160               |
| 13      | 0.9827            | -17.17        | -0.1352           | -0.0580               |
| 14      | 0.9800            | -18.62        | -0.1493           | -0.0486               |

Table-5: Weak bus identification indices after incorporating SVC units in a IEEE 14 Bus system considering VDL with Dynamic Tap Changer (VDTL)

| considering vDL with Dynamic Tap Changer (vDTL) |             |  |  |  |
|-------------------------------------------------|-------------|--|--|--|
| BUS                                             | VCP INDICES |  |  |  |
| 4                                               | 32.1803     |  |  |  |
| 5                                               | 28.3731     |  |  |  |
| 14                                              | 19.9878     |  |  |  |
| 7                                               | 17.2071     |  |  |  |
| 10                                              | 12.5262     |  |  |  |
| 13                                              | 8.7490      |  |  |  |
| 11                                              | 7.4766      |  |  |  |
| 12                                              | 4.9158      |  |  |  |
| 9                                               | 4.6146      |  |  |  |

Table-6: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and UPFC connected to the Bus 4 in line7

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2822            | -0.0939               |
| 2       | 1.0000            | -5.43         | 0.2473            | -0.1066               |
| 3       | 1.0000            | -14.29        | -0.9420           | 0.3546                |
| 4       | 0.9900            | -11.54        | -0.4781           | 0.0437                |
| 5       | 0.9826            | -9.73         | -0.0590           | 0.0234                |
| 6       | 1.0000            | -15.99        | -0.1208           | -0.0244               |

ISSN 2394 - 7780

Volume 2, Issue 4: October - December, 2015

| 7  | 0.9900 | -14.69 | 0.0000  | 0.0024  |
|----|--------|--------|---------|---------|
| 8  | 1.0000 | -14.69 | 0.0000  | 0.0580  |
| 9  | 0.9737 | -16.61 | -0.3093 | -0.1740 |
| 10 | 0.9703 | -16.83 | -0.0900 | -0.0580 |
| 11 | 0.9812 | -16.55 | -0.0351 | -0.0181 |
| 12 | 0.9832 | -16.96 | -0.0610 | -0.0160 |
| 13 | 0.9773 | -17.03 | -0.1350 | -0.0582 |
| 14 | 0.9557 | -17.96 | -0.0490 | -0.0500 |

| Table-7: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and UPFC |
|-------------------------------------------------------------------------------------------------|
| connected to the Bus 5 in line7                                                                 |

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2802            | -0.1199               |
| 2       | 1.0000            | -5.39         | 0.2472            | -0.1440               |
| 3       | 1.0000            | -14.20        | -0.9420           | 0.3547                |
| 4       | 0.9900            | -11.40        | -0.4780           | 0.0435                |
| 5       | 0.9900            | -9.86         | -0.0588           | 0.0201                |
| 6       | 1.0100            | -16.08        | -0.1208           | 0.0086                |
| 7       | 0.9917            | -14.77        | 0.0000            | 0.0000                |
| 8       | 1.0000            | -14.77        | 0.0000            | -0.0472               |
| 9       | 0.9771            | -16.61        | -0.3093           | -0.1740               |
| 10      | 0.9749            | -16.84        | -0.0900           | -0.0581               |
| 11      | 0.9885            | -16.60        | -0.0350           | -0.0180               |
| 12      | 0.9929            | -17.04        | -0.0610           | -0.0163               |
| 13      | 0.9865            | -17.09        | -0.1350           | -0.0580               |
| 14      | 0.9618            | -17.98        | -0.1490           | -0.0500               |

## Table-8: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and UPFC connected to the Bus 14 in line 20

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2803            | -0.1433               |
| 2       | 1.0000            | -5.44         | 0.2473            | 0.1203                |
| 3       | 0.9900            | -14.31        | -0.9420           | 0.3641                |
| 4       | 0.9685            | -11.26        | -0.4780           | 0.0390                |
| 5       | 0.9704            | -9.59         | -0.0593           | 0.0230                |
| 6       | 1.0100            | -15.97        | -0.1208           | 0.0469                |
| 7       | 0.9868            | -14.72        | 0.0000            | -0.0000               |
| 8       | 1.0000            | -14.72        | 0.0000            | -0.0721               |
| 9       | 0.9782            | -16.56        | 0.3093            | -0.1740               |
| 10      | 0.9758            | -16.77        | -0.0900           | -0.0580               |
| 11      | 0.9889            | -16.51        | -0.0350           | -0.0180               |
| 12      | 0.9948            | -16.97        | -0.0610           | -0.0160               |
| 13      | 0.9900            | -17.10        | -0.1350           | -0.0576               |
| 14      | 0.9900            | -18.60        | -0.1490           | -0.0485               |

#### 

| BUS | VCP INDICES |
|-----|-------------|
| 4   | 28.3207     |
| 5   | 24.4566     |
| 14  | 16.2944     |
| 7   | 13.8694     |
| 10  | 8.6075      |
| 13  | 4.7594      |
| 11  | 3.4012      |
| 12  | 0.8973      |
| 9   | 0.7985      |

Table-10: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and IPFCbetween lines 9 and 7 at bus 4

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2821     | -0.1639               |
| 2       | 1.0000            | -5.38         | 0.2471     | -0.2569               |
| 3       | 1.0000            | -14.12        | -0.9420    | 0.2953                |
| 4       | 1.0000            | -11.52        | -0.4780    | 0.0438                |
| 5       | 1.0000            | -9.98         | -0.0585    | 0.0209                |
| 6       | 1.0100            | -16.01        | -0.1208    | -0.0563               |
| 7       | 1.0000            | -14.64        | 0.0000     | 0.0023                |
| 8       | 1.0000            | -14.64        | 0.0000     | 0.0000                |
| 9       | 0.9841            | -16.54        | -0.3093    | -0.1740               |
| 10      | 0.9807            | -16.76        | -0.0900    | -0.0580               |
| 11      | 0.9915            | -16.52        | -0.0350    | -0.0180               |
| 12      | 0.9934            | -16.96        | -0.0610    | -0.0160               |
| 13      | 0.9875            | -17.02        | -0.1350    | -0.0580               |
| 14      | 0.9663            | -17.89        | -0.0490    | -0.0500               |

Table-11: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and IPFCBetween lines 9 and 7 at bus 5

| Bus No.  | Bus No. Voltage Magnitude Voltage Angle Real Power Reactive Power |        |         |         |  |  |  |  |
|----------|-------------------------------------------------------------------|--------|---------|---------|--|--|--|--|
| Dus Ivo. | 0 0                                                               | 0 0    |         |         |  |  |  |  |
| 1        | 1.0300                                                            | 0.00   | 2.2809  | -0.1637 |  |  |  |  |
| 2        | 1.0000                                                            | -5.37  | 0.2471  | -0.2570 |  |  |  |  |
| 3        | 1.0000                                                            | -14.12 | -0.9420 | 0.2953  |  |  |  |  |
| 4        | 1.0000                                                            | -11.52 | -0.4780 | 0.0438  |  |  |  |  |
| 5        | 1.0000                                                            | -9.97  | -0.0585 | 0.0209  |  |  |  |  |
| 6        | 1.0200                                                            | -15.90 | -0.1208 | 0.0381  |  |  |  |  |
| 7        | 1.0049                                                            | -14.77 | 0.0000  | 0.0000  |  |  |  |  |
| 8        | 1.0000                                                            | -14.77 | 0.0000  | -0.0277 |  |  |  |  |
| 9        | 1.0000                                                            | -16.52 | -0.3093 | -0.1691 |  |  |  |  |
| 10       | 0.9957                                                            | -16.72 | -0.0900 | -0.0580 |  |  |  |  |
| 11       | 1.0041                                                            | -16.45 | -0.0350 | -0.0180 |  |  |  |  |
| 12       | 1.0040                                                            | -16.83 | -0.0610 | -0.0i62 |  |  |  |  |
| 13       | 0.9986                                                            | -16.91 | -0.1350 | -0.0583 |  |  |  |  |
| 14       | 0.9804                                                            | -17.80 | -0.1490 | -0.0495 |  |  |  |  |

Table-12: Power flow solution for IEEE 14 Bus systems with VDL with Dynamic tap changer and IPFCbetween lines 17 and 20 at bus 14

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.2782     | -0.0601               |
| 2       | 1.0000            | -5.43         | 0.2473     | -0.0732               |
| 3       | 0.9900            | -14.27        | -0.9420    | 0.3383                |
| 4       | 0.9729            | -11.31        | -0.4780    | 0.0390                |
| 5       | 0.9743            | -9.63         | -0.0592    | 0.0231                |
| 6       | 1.0200            | -15.80        | -0.1208    | 0.0494                |
| 7       | 0.9981            | -14.76        | 0.0000     | 0.0000                |
| 8       | 1.0000            | -14.76        | 0.0000     | -0.0094               |
| 9       | 1.0000            | -16.57        | -0.3093    | -0.1684               |
| 10      | 0.9957            | -16.75        | -0.0900    | -0.0580               |
| 11      | 1.0040            | -16.42        | -0.0350    | -0.0180               |
| 12      | 1.0048            | -16.75        | -0.0610    | -0.0160               |
| 13      | 1.0000            | -16.86        | -0.1350    | -0.0578               |
| 14      | 1.0000            | -18.21        | -0.1490    | -0.0489               |

| considering vDL with Dynamic Tap Changer (vDTL) |  |  |  |  |  |
|-------------------------------------------------|--|--|--|--|--|
| VCP INDICES                                     |  |  |  |  |  |
| 26.2509                                         |  |  |  |  |  |
| 22.4802                                         |  |  |  |  |  |
| 10.7220                                         |  |  |  |  |  |
| 8.2742                                          |  |  |  |  |  |
| 7.9210                                          |  |  |  |  |  |
| 4.7275                                          |  |  |  |  |  |
| 3.3335                                          |  |  |  |  |  |
| 0.6957                                          |  |  |  |  |  |
| 0.6166                                          |  |  |  |  |  |
|                                                 |  |  |  |  |  |

## Table-13: Weak bus identification indices after incorporating IPFC units in a IEEE 14 Bus system considering VDL with Dynamic Tap Changer (VDTL)

# Table-14: Weak bus identification indices with its percentage before and after incorporating FACTS in IEEE 14 Bus system with Dynamic Tap Changer (VDTL)

|          | VCP Index     |     |        |       |        |       |        |       |
|----------|---------------|-----|--------|-------|--------|-------|--------|-------|
| Bus No.  | Without FACTS |     | SV     | C     | UP     | FC    | IP     | FC    |
| DUS INU. | Actual        | %   | Actual | %     | Actual | %     | Actual | %     |
| 4        | 37.15         | 100 | 32.18  | 86.62 | 28.32  | 76.23 | 26.25  | 70.65 |
| 5        | 34.15         | 100 | 28.37  | 83.37 | 24.45  | 71.59 | 22.48  | 65.82 |
| 14       | 23.14         | 100 | 19.98  | 86.63 | 16.29  | 70.39 | 10.72  | 46.32 |

Table-15: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads in bus 4, 5 and bus 14.

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.0000        | 2.3502            | -0.4376               |
| 2       | 1.0000            | -6.071        | 0.1830            | 0.6812                |
| 3       | 0.9800            | -14.955       | -0.9420           | 0.3166                |
| 4       | 0.9591            | -11.915       | -0.4780           | 0.0390                |
| 5       | 0.9606            | -10.222       | -0.0760           | -0.0160               |
| 6       | 1.0000            | -17.105       | -0.1454           | 0.1281                |
| 7       | 0.9747            | -15.586       | 0.0100            | 0.0100                |
| 8       | 1.0000            | -15.890       | 0.0000            | 0.1435                |
| 9       | 0.9585            | -17.493       | -0.3150           | -0.1860               |
| 10      | 0.9577            | -17.750       | -0.0900           | -0.0580               |
| 11      | 0.9748            | -17.562       | -0.0350           | -0.0180               |
| 12      | 0.9821            | -18.079       | -0.0610           | -0.0160               |
| 13      | 0.9750            | -18.166       | -0.1350           | -0.0580               |
| 14      | 0.9460            | -18.956       | -0.1490           | 0.0500                |

#### Table-16: Weak bus identification using VCP indices with ERL Loads

| Die-10. Weak bus identification using VCI multes with EKL |             |  |  |  |  |
|-----------------------------------------------------------|-------------|--|--|--|--|
| BUS                                                       | VCP INDICES |  |  |  |  |
| 4                                                         | 37.1141     |  |  |  |  |
| 5                                                         | 34.1173     |  |  |  |  |
| 14                                                        | 23.0808     |  |  |  |  |
| 7                                                         | 19.0445     |  |  |  |  |
| 10                                                        | 14.0830     |  |  |  |  |
| 13                                                        | 10.0830     |  |  |  |  |
| 11                                                        | 8.2640      |  |  |  |  |
| 12                                                        | 5.3143      |  |  |  |  |
| 9                                                         | 5.0025      |  |  |  |  |
|                                                           |             |  |  |  |  |

Volume 2, Issue 4: October - December, 2015

| Table-17: | Power floy | w solution for | IEEE 14 | Bus systems | with Ex | ponential Recov | very l | Loads and SV | C in bus 4 |
|-----------|------------|----------------|---------|-------------|---------|-----------------|--------|--------------|------------|
|           |            |                |         |             |         |                 |        |              |            |

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.3242     | -0.0722               |
| 2       | 1.0000            | -5.53         | 0.2475     | 0.0406                |
| 3       | 0.9900            | -14.40        | -0.9420    | 0.3032                |
| 4       | 0.9800            | -11.64        | -0.4780    | 0.0432                |
| 5       | 0.9760            | -9.88         | -0.0590    | 0.0231                |
| 6       | 1.0000            | -16.58        | -0.1454    | 0.0267                |
| 7       | 0.9841            | -15.23        | -0.0100    | -0.0100               |
| 8       | 1.0000            | -15.24        | 0.0000     | 0.0900                |
| 9       | 0.9675            | -17.12        | -0.3150    | -0.1860               |
| 10      | 0.9652            | -17.35        | -0.0900    | -0.0580               |
| 11      | 0.9786            | -17.10        | -0.0350    | -0.0180               |
| 12      | 0.9828            | -17.56        | -0.0610    | -0.0160               |
| 13      | 0.9763            | -17.61        | 0.1350     | 0.0580                |
| 14      | 0.9518            | -18.51        | -0.1490    | -0.0500               |

Table 18: <u>Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and SVC</u> in bus 5

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.3238     | -0.0841               |
| 2       | 1.0000            | -5.52         | 0.2475     | 0.0668                |
| 3       | 0.9900            | -14.41        | -0.9420    | 0.3478                |
| 4       | 0.9724            | -11.48        | -0.4780    | 0.0390                |
| 5       | 0.9800            | -9.92         | -0.0589    | 0.0195                |
| 6       | 1.0000            | -16.59        | -0.1454    | 0.0262                |
| 7       | 0.9808            | -15.12        | -0.0100    | -0.0100               |
| 8       | 1.0000            | -15.13        | 0.0000     | 0.1092                |
| 9       | 0.9643            | -17.02        | -0.3150    | -0.1860               |
| 10      | 0.9625            | -17.27        | -0.0900    | -0.0580               |
| 11      | 0.9772            | -17.07        | -0.0350    | -0.0181               |
| 12      | 0.9825            | -17.56        | -0.0611    | -0.0162               |
| 13      | 0.9759            | -17.61        | -0.1350    | -0.0583               |
| 14      | 0.9497            | -18.46        | -0.1490    | -0.0499               |

Table-19: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and SVC in bus 14

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.3249            | -0.0372               |
| 2       | 1.0000            | -5.55         | 0.2476            | 0.1611                |
| 3       | 0.9900            | -14.51        | -0.9420           | 0.3811                |
| 4       | 0.9656            | -11.46        | -0.4780           | 0.0390                |
| 5       | 0.9672            | -9.77         | -0.0592           | 0.0228                |
| 6       | 1.0000            | -16.47        | -0.1454           | -0.0078               |
| 7       | 0.9822            | -15.14        | -0.0100           | -0.0100               |
| 8       | 1.0000            | -15.14        | 0.0000            | 0.0981                |
| 9       | 0.9712            | -17.05        | -0.3150           | -0.1860               |
| 10      | 0.9682            | -17.27        | -0.0900           | -0.0580               |
| 11      | 0.9801            | -17.01        | -0.0350           | -0.0180               |
| 12      | 0.9862            | -17.49        | -0.0610           | -0.0162               |
| 13      | 0.9827            | -17.68        | -0.1350           | -0.0580               |
| 14      | 0.9800            | -19.11        | -0.1490           | -0.0495               |

| BUS | VCP INDICES |
|-----|-------------|
| 4   | 29.9803     |
| 5   | 21.4731     |
| 14  | 19.9878     |
| 7   | 17.6071     |
| 10  | 12.9262     |
| 13  | 9.1490      |
| 11  | 7.5766      |
| 12  | 5.1158      |
| 9   | 4.8146      |

| Table-20: Weak bus identification indices after incorporating SVC units in a IEEE 14 Bus system |
|-------------------------------------------------------------------------------------------------|
| considering Exponential Recovery Loads (ERL)                                                    |

Table-21: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and UPFC connected to the Bus 4 in line7

| Bus No. | Voltage MagnitudeVoltage AngleRe |        | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|----------------------------------|--------|-------------------|-----------------------|
| 1       | 1.0300                           | 0.00   | 2.3270            | -0.1001               |
| 2       | 1.0000                           | -5.53  | 0.2475            | -0.0986               |
| 3       | 1.0000                           | -14.46 | -0.9420           | 0.3544                |
| 4       | 0.9900                           | -11.77 | -0.4780           | 0.0439                |
| 5       | 0.9822                           | -9.94  | -0.0589           | 0.0233                |
| 6       | 1.0000                           | -16.49 | -0.1454           | -0.0164               |
| 7       | 0.9900                           | -15.07 | -0.0100           | -0.0075               |
| 8       | 1.0000                           | -15.07 | 0.0000            | -0.0568               |
| 9       | 0.9729                           | -17.02 | -0.3150           | -0.1860               |
| 10      | 0.9696                           | -17.25 | -0.0900           | -0.0581               |
| 11      | 0.9809                           | -17.01 | -0.0350           | -0.0180               |
| 12      | 0.9831                           | -17.46 | -0.0611           | -0.0161               |
| 13      | 0.9771                           | -17.52 | -0.1350           | -0.0580               |
| 14      | 0.9552                           | -18.41 | -0.0490           | -0.0500               |

 Table-22: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and UPFC connected to the Bus 5 in line7

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.3249            | -0.1361               |
| 2       | 1.0000            | -5.50         | 0.2474            | -0.2391               |
| 3       | 1.0000            | -14.37        | -0.9420           | 0.2955                |
| 4       | 0.9900            | -11.63        | -0.4780           | 0.0442                |
| 5       | 0.9900            | -10.07        | -0.0586           | 0.0238                |
| 6       | 1.0000            | -16.58        | -0.1454           | 0.0193                |
| 7       | 0.9887            | -15.21        | 0.0100            | 0.0000                |
| 8       | 1.0000            | -15.21        | 0.0000            | -0.0146               |
| 9       | 0.9720            | -17.11        | -0.3150           | -0.1740               |
| 10      | 0.9689            | -17.34        | 0.0900            | -0.0580               |
| 11      | 0.9805            | -17.10        | -0.0350           | -0.0180               |
| 12      | 0.9831            | -17.55        | -0.0611           | -0.0i60               |
| 13      | 0.9770            | -17.61        | -0.1350           | -0.0580               |
| 14      | 0.9546            | -18.50        | -0.1492           | -0.0499               |

Table-23: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and UPFC connected to the Bus 14 in line20

| Bus No. | Is No. Voltage Magnitude Voltage Angle |        | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|----------------------------------------|--------|-------------------|-----------------------|
| 1       | 1.0300                                 | 0.00   | 2.3252            | -0.1469               |
| 2       | 1.0000                                 | -5.55  | 0.2476            | 0.1377                |
| 3       | 0.9900                                 | -14.49 | -0.9420           | 0.3700                |
| 4       | 0.9675                                 | -11.47 | -0.4780           | 0.0390                |
| 5       | 0.9694                                 | -9.80  | -0.0592           | 0.0229                |
| 6       | 1.0100                                 | -16.49 | -0.1454           | 0.0581                |
| 7       | 0.9852                                 | -15.10 | -0.0100           | -0.0100               |
| 8       | 1.0000                                 | -15.10 | 0.0000            | -0.0814               |
| 9       | 0.9765                                 | -16.97 | -0.3150           | -0.1860               |
| 10      | 0.9744                                 | -17.21 | -0.0900           | -0.0580               |
| 11      | 0.9882                                 | -16.98 | -0.0350           | -0.0181               |
| 12      | 0.9948                                 | -17.48 | -0.0610           | -0.0162               |
| 13      | 0.9900                                 | -17.61 | -0.1350           | -0.0580               |
| 14      | 0.9900                                 | -19.08 | -0.1490           | -0.0485               |

Table-24: Weak bus identification indices after incorporating UPFC units in a IEEE 14 Bus system considering Exponential Recovery Loads (ERL)

| BUS | VCP INDICES |
|-----|-------------|
| 4   | 26.1207     |
| 5   | 17.5566     |
| 14  | 16.2944     |
| 7   | 14.2694     |
| 10  | 9.0075      |
| 13  | 5.1594      |
| 11  | 3.5012      |
| 12  | 1.0973      |
| 9   | 0.9985      |

Table-25: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and IPFCBetween lines 9 and 7 at bus 4

| Bus No. | Voltage Magnitude | Voltage Angle | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-------------------|---------------|-------------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.3287            | -0.1365               |
| 2       | 1.0000            | -5.52         | 0.2475            | -0.2012               |
| 3       | 1.0000            | -14.38        | -0.9420           | 0.2950                |
| 4       | 1.0000            | -11.88        | -0.4780           | 0.0446                |
| 5       | 1.0000            | -10.06        | -0.0586           | 0.0236                |
| 6       | 1.0200            | -16.51        | -0.1454           | -0.0303               |
| 7       | 1.0007            | -15.35        | -0.0100           | -0.0100               |
| 8       | 1.0000            | -15.34        | 0.0000            | -0.0042               |
| 9       | 0.9923            | -17.15        | -0.3150           | -0.1861               |
| 10      | 0.9893            | -17.35        | -0.0900           | -0.0581               |
| 11      | 1.0008            | -17.07        | -0.0350           | -0.0180               |
| 12      | 1.0064            | -17.50        | -0.0610           | -0.0160               |
| 13      | 1.0030            | -17.68        | 0.1350            | 0.0580                |
| 14      | 1.0000            | -19.08        | -0.0499           | -0.0498               |

Table-26: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and IPFCBetween lines 9 and 7 at bus 5

| Bus No. | No. Voltage Magnitude Voltage Angle Rea |        | <b>Real Power</b> | <b>Reactive Power</b> |
|---------|-----------------------------------------|--------|-------------------|-----------------------|
| 1       | 1.0300                                  | - 0.00 | 2.3256            | -0.1361               |
| 2       | 1.0000                                  | -5.44  | 0.2473            | -0.2391               |
| 3       | 1.0000                                  | -14.12 | -0.9420           | 0.2955                |
| 4       | 1.0000                                  | -11.47 | -0.4780           | 0.0442                |
| 5       | 1.0000                                  | -9.76  | -0.0588           | 0.0238                |
| 6       | 1.0300                                  | -16.05 | -0.1208           | 0.0193                |
| 7       | 1.0026                                  | -14.66 | 0.0000            | 0.0000                |
| 8       | 1.0000                                  | -14.65 | 0.0000            | -0.0146               |
| 9       | 1.9950                                  | -16.38 | -0.3093           | -0.1740               |
| 10      | 0.9933                                  | -16.63 | 0.0900            | -0.0580               |
| 11      | 1.0078                                  | -16.47 | -0.0350           | -0.0180               |
| 12      | 1.0163                                  | -17.08 | -0.0610           | -0.0i60               |
| 13      | 1.0121                                  | -17.32 | -0.1350           | -0.0580               |
| 14      | 1.0000                                  | -17.84 | -0.1499           | -0.0499               |

Table-27: Power flow solution for IEEE 14 Bus systems with Exponential Recovery Loads and IPFCBetween lines 17 and 20 at bus 14

| Bus No. | Voltage Magnitude | Voltage Angle | Real Power | <b>Reactive Power</b> |
|---------|-------------------|---------------|------------|-----------------------|
| 1       | 1.0300            | 0.00          | 2.3336     | -0.1467               |
| 2       | 1.0000            | -5.55         | 0.2476     | -0.2364               |
| 3       | 1.0000            | -14.29        | -0.9420    | 0.2953                |
| 4       | 1.0000            | -11.68        | -0.4780    | 0.0443                |
| 5       | 0.9924            | -10.02        | -0.0586    | 0.0237                |
| 6       | 1.0400            | -16.82        | -0.1454    | 0.0291                |
| 7       | 1.0020            | -14.89        | -0.0100    | -0.0100               |
| 8       | 1.0000            | -16.57        | 0.0000     | -0.0114               |
| 9       | 0.9949            | -16.91        | -0.3150    | -0.1860               |
| 10      | 0.9951            | -16.98        | -0.0900    | -0.0580               |
| 11      | 1.0137            | -16.52        | -0.0350    | -0.0180               |
| 12      | 1.0291            | -17.96        | -0.0611    | -0.0160               |
| 13      | 1.0267            | -18.39        | -0.1351    | -0.0580               |
| 14      | 1.0000            | -17.58        | -0.1490    | -0.0495               |

| Table-28: Weak bus identification indices after incorporating IPFC units in a IEEE 14 Bus system |
|--------------------------------------------------------------------------------------------------|
| considering Exponential Recovery Loads (ERL)                                                     |

| BUS | VCP INDICES |
|-----|-------------|
| 4   | 24.0509     |
| 5   | 15.5802     |
| 14  | 10.7220     |
| 7   | 8.6742      |
| 10  | 8.3210      |
| 13  | 5.1275      |
| 11  | 3.4335      |
| 12  | 0.8957      |
| 9   | 0.8166      |

 Table-29: Weak bus identification indices with its percentage before and after incorporating FACTS in IEEE 14 Bus system considering Exponential Recovery Loads (ERL)

|         | VCP Index |          |        |       |        |       |        |       |
|---------|-----------|----------|--------|-------|--------|-------|--------|-------|
| Bus No. | Withou    | it FACTS | S      | VC    | UP     | FC    | IP     | FC    |
| Dus No. | Actual    | %        | Actual | %     | Actual | %     | Actual | %     |
| 4       | 37.11     | 100      | 29.98  | 80.78 | 26.12  | 70.38 | 24.05  | 64.80 |
| 5       | 24.12     | 100      | 21.47  | 89.01 | 17.55  | 72.26 | 15.58  | 64.58 |
| 14      | 23.08     | 100      | 19.98  | 86.56 | 16.29  | 70.58 | 10.72  | 46.44 |

#### **VI. CONCLUSION**

This paper proposes the synchronized essential control with the usage of various FACTS devices especially SVC, UPFC, IPFC units. A method is needed to rapidly re-balance the power by either shedding some loads to maintain power flow to the remaining loads or directing the power flow across transmission corridors with greater capacity In this study, Bacterial Foraging optimization (BFO) technique was adopted to ensure the stability of the system with various types of loads. Using the BFO algorithm the FACTS devices are turned to ensure sufficient power flow capacity so as to meet out the load effectively if the network is reconfigured to bypass the loss in the transmission capability. IEEE 14 bus system was considered for the study. With the preliminary Load flow studies the week bus identified by obtaining VCPI index. It was found that hierarchical weak bus listing was Bus No 4, 5 and 14. VDL with dynamic tap changer/ERL Loads are considered along the week Buses ie with buses 4,5 and 14. Then the power system security assessment was carried out individually by accommodating various FACTS devices like SVC, UPFC and IPFC respectively and it has been found that with the UPFC, IPFC controller, the load shedding adoption is significantly reduced and can be utilized for emergency control. From the results it has been found that the FACTS devices especially UPFC and IPFC effectively avert the system from blackout and reinstate the system faster.

#### REFERENCES

- 1. Srivani J, Swarup K.S, "Power system static security assessment and evaluation using external system equivalents", **Electrical Power and Energy Systems**, Vol. 30, pp 83–92, 2008.
- 2. Kundur P, Morrison K, Wang L, "Power System Security Assessment", IEEE Power and Energy Management, Vol.2, No.5, pp. 30-39, 2004.
- 3. Demaree K, Athay T, Chang K.W, Mansour Y, Vaheedi E, Chang A.Y, Corns B.R, Garrett B.W, "An Online dynamic security analysis system implementation", **IEEE Transaction on Power Systems**, Vol.9, No.4, pp.1716-1722, 1994.
- 4. Liang Y, Fischl R, DeVito A, Readinger S.C, "Dynamic reactive load model", **IEEE Transactions on Power Systems**, Vol.13, No.4, pp.1365-1372, 1998.
- 5. Xu W and Mansour Y, "Voltage stability analysis using generic dynamic load models", **IEEE Transactions on Power Systems**, Vol. 9, No.1, pp. 479-493, 1994.
- 6. Navarro I.R, Samuelsson O, Lindahl S, "Automatic Determination of parameters in Dynamic Load Models from Normal Operation Data", **IEEE Transactions on Power Systems**, Vol. 3, No.6, pp. 1376-1378, 2003.
- 7. Sabir S.A.Y, Lee D.C, "Dynamic load models derived from data acquired during system transients", **IEEE Transactions on Power Apparatus and System**, Vol. 101, No.9, pp. 3365-3372, 1982.
- 8. Hiskens I.A, "Nonlinear dynamic model evaluation from disturbance measurements", **IEEE Transactions on Power Systems**, Vol. 16, No. 4, pp. 702-710, 2001.
- 9. Lof P.A, Andeson G, Hill D.J, "Voltage Dependent Reactive Power Limits for Voltage Stability Studies", **IEEE Transactions on Power Systems**, Vol. 10, No.1, pp. 220-228, 1995.
- 10. Musirin, Rahman T. K. A, "Estimating Maximum Loadability for Weak Bus Identification Using *FVSI*", **IEEE Power Engineering Review**, Vol. 22, pp. 50-52, 2002.
- 11. Semlyen, Gao B, Janischevskj W, "Calculation of the Extreme Loading Condition of a Power System for the Assessment of Voltage Stability", **IEEE Transactions on Power Systems**, Vol. 6, No.1, pp. 307–315, 1991.
- 12. Morison G.K, B. Gao, Kundur P, "Voltage stability analysis using static and dynamic approaches", **IEEE Transactions on Power Systems**, Vol. 8, No.3, pp. 1159-1171, 1993.

- 13. Prakash Burade, Jagdish Helonde, "Optimal Location of FACTS Device on enhancing system security", International Journal of Scientific & Engineering Research, Vol. 3, No.5, pp.1-7, 2012.
- 14. Ya-Chin Chang, Rung-Fang Chang, "Utilization Performance based FACTS Devices Installation Strategy for Transmission Loadability Enhancement", **IEEE Transactions on Power Systems**, Vol. 3, No.1, pp. 2261–2266, 2009.
- 15. Tibin J, Sini X, Chitra S, Cherian V.I, Sasidharan Sreedharan, "PSO Based Optimal Placement and Setting of FACTS Devices for Improving the Performance of Power Distribution System", **Bonfring** International Journal of Power Systems and Integrated Circuits, Vol. 1, No.1, pp.60-64, 2011.
- 16. Vanitila R, Sudhakaran M, "Differential Evolution algorithm based Weighted Additive FGA approach for optimal power flow using muti-type FACTS devices", IEEE Conference Publications on Emerging Trends in Electrical Engineering and Energy Management, Chennai, Vol. 1, No.5, pp.198-204, 2012.
- 17. Abdel-Moamen M.A, Padhy N.P, "Optimal power flow incorporating FACTS devices bibliography and survey", **IEEE Conference Publications on Transmission and Distribution Conference and Exposition**, Pennsyvenia, Vol. 2, No.6, pp.669-676, 2003.
- 18. Banu R.N, Devaraj D, "Genetic Algorithm approach for Optimal Power Flow with FACTS devices", **IEEE Conference Publications on Transmission and Distribution**, Varna, Vol. 3, No.6, pp.11-16, 2008.
- 19. Aditya Tiwari, Swarnkar K.K, Wadhwani S, Wadhwani A.K, "Optimal Power Flow with Facts Devices using Genetic Algorithm", International Journal of Power System Operation and Energy Management, Vol. 1, No.2, pp.66-72, 2011.
- 20. Sakthivel S, Mary D, Deivarajamani M, "Reactive Power Planning for Voltage Stability Limit Improvement with FACTS Devices in Most Critical Contingency Condition", **European Journal of Scientific Research**, Vol. 66, No.3, pp.408-420, 2011.